Bismuth(iii) Thiophosphinates: Understanding How a Small Atomic Change Influences Antibacterial Activity and Mammalian Cell Viability*
Dimuthu C. Senevirathna A , Rebekah N. Duffin A B , Liam J. Stephens A , Megan E. Herdman A , Melissa V. Werrett A C and Philip C. Andrews A CA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Current address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Vic. 3052, Australia.
C Corresponding authors. Email: melissa.werrett@monash.edu; phil.andrews@monash.edu
Australian Journal of Chemistry 73(12) 1226-1236 https://doi.org/10.1071/CH20169
Submitted: 28 May 2020 Accepted: 3 August 2020 Published: 18 September 2020
Abstract
Diphenylphosphinothioic acid (HSP(=O)Ph2) and diphenylphosphinodithioic acid (HSP(=S)Ph2) have been used to synthesise four BiIII complexes: 1 [Bi(SP(=O)Ph2)3], 2 [BiPh(SP(=O)Ph2)2], 3 [BiPh2(SP(=O)Ph2)], and 4 [Bi(SP(=S)Ph2)3], using BiPh3 and [Bi(OtBu)3] as bismuth sources. The complexes have been characterised by NMR spectroscopy, mass spectrometry, infrared spectroscopy, powder X-ray diffraction, and singe crystal X-ray crystallography (2–4). Biological studies indicated that despite complexes 2 and 3 reducing mammalian cell viability, their antibacterial activity provides a good degree of selectivity towards both Gram positive and Gram negative bacterial strains. The minimum inhibitory concentrations for complexes 2 and 3 are in the range of 0.52–5.5 µM towards the bacteria tested. Homoleptic complexes 1 and 4 were generally less active towards both bacterial and mammalian cells.
References
[1] M. Ruck, F. Locherer, Coord. Chem. Rev. 2015, 285, 1.| Crossref | GoogleScholarGoogle Scholar |
[2] P. J. Sadler, H. Li, H. Sun, Coord. Chem. Rev. 1999, 185–186, 689.
| Crossref | GoogleScholarGoogle Scholar |
[3] K. H. Whitmire, in Encyclopedia of Inorganic and Bioinorganic Chemistry 2013, pp. 1–32 (John Wiley & Sons, Ltd: Chichester).
[4] N. Yang, H. Sun, Coord. Chem. Rev. 2007, 251, 2354.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. N. Duffin, M. V. Werrett, P. C. Andrews, in Advances in Inorganic Chemistry – Medicinal Chemistry (Eds P. J. Sadler, R. van Eldik) 2020, Vol. 75, pp. 207–255 (Elsevier Inc.: Amsterdam).
[6] Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, J. Coord. Chem. 2015, 68, 379.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Wang, T.-P. Lai, P. Gao, H. Zhang, P.-L. Ho, P. C.-Y. Woo, G. Ma, R. Y.-T. Kao, H. Li, H. Sun, Nat. Commun. 2018, 9, 439.
| Crossref | GoogleScholarGoogle Scholar | 29382822PubMed |
[8] M. Busse, I. Trinh, P. C. Junk, R. L. Ferrero, P. C. Andrews, Chem. – Eur. J. 2013, 19, 5264.
| Crossref | GoogleScholarGoogle Scholar | 23536213PubMed |
[9] P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Dalton Trans. 2012, 41, 11798.
| Crossref | GoogleScholarGoogle Scholar | 22903621PubMed |
[10] A. Pathak, V. L. Blair, R. L. Ferrero, M. Mehring, P. C. Andrews, Chem. Commun. 2014, 50, 15232.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Pathak, V. L. Blair, R. L. Ferrero, P. C. Junk, R. F. Tabor, P. C. Andrews, Dalton Trans. 2015, 44, 16903.
| Crossref | GoogleScholarGoogle Scholar | 26352159PubMed |
[12] A. Pathak, V. L. Blair, R. L. Ferrero, L. Kedzierski, P. C. Andrews, J. Inorg. Biochem. 2017, 177, 266.
| Crossref | GoogleScholarGoogle Scholar | 28583712PubMed |
[13] K. J. Burke, L. J. Stephens, M. V. Werrett, P. C. Andrews, Chem. – Eur. J. 2020, 26, 7657.
| Crossref | GoogleScholarGoogle Scholar | 32297355PubMed |
[14] M. V. Werrett, M. E. Herdman, R. Brammananth, U. Garusinghe, W. Batchelor, P. K. Crellin, R. L. Coppel, P. C. Andrews, Chem. – Eur. J. 2018, 24, 12938.
| Crossref | GoogleScholarGoogle Scholar | 29911327PubMed |
[15] M. E. Herdman, M. V. Werrett, R. N. Duffin, L. J. Stephens, R. Brammananth, R. L. Coppel, W. Batchelor, P. C. Andrews, Dalton Trans. 2020, 49, 7341.
| Crossref | GoogleScholarGoogle Scholar | 32392274PubMed |
[16] M. Maliha, M. Herdman, R. Brammananth, M. McDonald, R. Coppel, M. Werrett, P. Andrews, W. Batchelor, J. Clean. Prod. 2020, 246, 119016.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. a. Phillips, N. Burford, Inorg. Chem. 2008, 47, 2428.
| Crossref | GoogleScholarGoogle Scholar | 18293918PubMed |
[18] C. Wu, P. Domenico, D. J. Hassett, T. J. Beveridge, A. R. Hauser, J. A. Kazzaz, Am. J. Respir. Cell Mol. Biol. 2002, 26, 731.
| Crossref | GoogleScholarGoogle Scholar | 12034573PubMed |
[19] P. Domenico, J. Microbiol. Exp. 2015, 2, 9.
| Crossref | GoogleScholarGoogle Scholar |
[20] P. Domenico, L. Baldassarri, P. E. Schoch, K. Kaehler, M. Sasatsu, B. A. Cunha, Antimicrob. Agents Chemother. 2001, 45, 1417.
| Crossref | GoogleScholarGoogle Scholar | 11302804PubMed |
[21] A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppel, P. C. Andrews, Chem. – Eur. J. 2014, 20, 14362.
| Crossref | GoogleScholarGoogle Scholar | 25224757PubMed |
[22] A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppel, P. C. Andrews, Eur. J. Inorg. Chem. 2016, 2738.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppel, L. Kedzierski, P. C. Andrews, Eur. J. Inorg. Chem. 2015, 725.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Joensson, M. Silvestru, A. Silvestru, Studia UBB Chemia 2006, 1, 83.
[25] A. Müller, V. V. K. Rao, G. Klinksiek, Chem. Ber. 1971, 104, 1892.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. J. Begley, M. Nunn, D. B. Sowerby, J. Chem. Soc., Dalton Trans. 1986, 1031.
[27] M. J. Begley, D. B. Sowerby, I. Haiduc, J. Chem. Soc., Dalton Trans. 1987, 145.
| Crossref | GoogleScholarGoogle Scholar |
[28] C. Silvestru, I. Haiduc, K. H. Ebert, H. J. Breunig, D. B. Sowerby, J. Organomet. Chem. 1994, 468, 113.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. S. Casas, A. Sanchez, J. Sordo, E. M. Vazquez-Lopez, E. E. Castellano, J. Zukerman-Schpector, Polyhedron 1992, 11, 2889.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. S. Casas, M. S. García-Tasende, A. Sánchez, J. Sordo, E. M. Vázquez-López, Inorg. Chim. Acta 1997, 256, 211.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. Zukerman-Schpector, E. M. Vázquez-López, A. Sánchez, J. S. Casas, J. Sordo, J. Organomet. Chem. 1991, 405, 67.
| Crossref | GoogleScholarGoogle Scholar |
[32] R. S. Z. Kowalski, N. A. Bailey, R. Mulvaney, H. Adams, D. A. O’Cleirigh, J. A. McCleverty, Transition Met. Chem. 1981, 6, 64.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. M. C. Alison, T. A. Stephenson, R. O. Gould, J. Chem. Soc. A 1971, 3690.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. A. Varga, C. Silvestru, Main Group Met. Chem. 2007, 30, 593833.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. S. Casas, A. Castiñeiras, M. C. Rodríguez-Argüelles, A. Sánchez, J. Sordo, A. Vázquez-López, E. M. Vázquez-López, J. Chem. Soc., Dalton Trans. 2000, 22, 4056.
| Crossref | GoogleScholarGoogle Scholar |
[36] L. Y. Goh, W. K. Leong, P.-H. Leung, Z. Weng, I. Haiduc, J. Organomet. Chem. 2000, 607, 64.
| Crossref | GoogleScholarGoogle Scholar |
[37] Y. Wang, Y. F. Shi, X. B. Li, X. C. Zou, Y. C. He, X. Wang, Jiegou Huaxue 2019, 38, 1216.
[38] C. Silvestru, R. A. Toscano, J. Cardenas, R. Cea-Olivares, A. Silvestru, I. Haiduc, Polyhedron 1995, 14, 2231.
| Crossref | GoogleScholarGoogle Scholar |
[39] F. T. Edelmann, M. Noltemeyer, I. Haiduc, C. Silvestru, R. Cea-Olivares, Polyhedron 1994, 13, 547.
| Crossref | GoogleScholarGoogle Scholar |
[40] W. Kuchen, J. Metten, A. Judat, Chem. Ber. 1964, 97, 2306.
| Crossref | GoogleScholarGoogle Scholar |
[41] K. Yoshida, Y. Shimoishi, K. Tôei, Bunseki Kagaku 1982, 31, 276.
| Crossref | GoogleScholarGoogle Scholar |
[42] R. Mattes, D. Ruhl, Z. Anorg. Allg. Chem. 1984, 508, 19.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. J. Begley, D. B. Sowerby, D. M. Wesolek, C. Silvestru, I. Haiduc, J. Organomet. Chem. 1986, 316, 281.
| Crossref | GoogleScholarGoogle Scholar |
[44] A. Silvestru, C. Silvestru, I. Haiduc, J. E. Drake, J. Yang, F. Caruso, Polyhedron 1997, 16, 949.
| Crossref | GoogleScholarGoogle Scholar |
[45] C. Silvestru, I. Haiduc, F. Caruso, M. Rossi, B. Mahie, M. Gielen, J. Organomet. Chem. 1993, 448, 75.
| Crossref | GoogleScholarGoogle Scholar |
[46] K.-M. Mühlstephen, R. Mattes, Z. Anorg. Allg. Chem. 1983, 506, 115.
| Crossref | GoogleScholarGoogle Scholar |
[47] A. Bara, C. Socaciu, C. Silvestru, I. Haiduc, Anticancer Res. 1991, 11, 1651.
| 1836124PubMed |
[48] C. Socaciu, I. Pasca, C. Silvestru, A. Bara, I. Haiduc, Met. Based Drugs 1994, 1, 291.
| Crossref | GoogleScholarGoogle Scholar | 18476242PubMed |
[49] H. P. S. Chauhan, U. P. Singh, N. M. Shaik, S. Bhatiya, Main Group Met. Chem. 2007, 30, 279.
[50] T. K. Pal, M. A. Alam, M. A. A. A. A. Islam, S. R. Paul, J. Sci. Res. 2012, 4, 427.
| Crossref | GoogleScholarGoogle Scholar |
[51] K. H. Ebert, R. E. Schulz, H. J. Breunig, C. Silvestru, I. Haiduc, J. Organomet. Chem. 1994, 470, 93.
| Crossref | GoogleScholarGoogle Scholar |
[52] G. Svensson, J. Albertsson, Acta Chem. Scand. 1989, 43, 511.
| Crossref | GoogleScholarGoogle Scholar |
[53] D. B. Sowerby, I. Haiduc, J. Chem. Soc., Dalton Trans. 1987, 195, 1257.
| Crossref | GoogleScholarGoogle Scholar |
[54] J. Wagner, M. Ciesielski, C. A. Fleckenstein, H. Denecke, F. Garlichs, A. Ball, M. Doering, Org. Process Res. Dev. 2013, 17, 47.
| Crossref | GoogleScholarGoogle Scholar |
[55] T. Hatanaka, R. Yuki, R. Saito, K. Sasaki, Org. Biomol. Chem. 2016, 14, 10589.
| Crossref | GoogleScholarGoogle Scholar | 27805224PubMed |
[56] P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, K. K. Huynh, I. Kumar, J. G. Maclellan, Dalton Trans. 2010, 39, 9633.
| Crossref | GoogleScholarGoogle Scholar | 20830402PubMed |
[57] Search of the Cambridge Structural Database 2020, ConQuest Version 8.6, March 2020.
[58] D. C. Senevirathna, M. V. Werrett, N. Pai, V. L. Blair, L. Spiccia, P. C. Andrews, Chem. – Eur. J. 2017, 23, 8171.
| Crossref | GoogleScholarGoogle Scholar | 28470785PubMed |
[59] E. M. Czekanska, in Methods in Molecular Biology (Ed. M. J. Stoddart) 2011, Vol 740, Ch. 5, pp. 27–32 (Springer Science + Business Media: Berlin).
[60] R. N. Duffin, V. L. Blair, L. Kedzierski, P. C. Andrews, Eur. J. Med. Chem. 2020, 186, 111895.
| Crossref | GoogleScholarGoogle Scholar | 31771825PubMed |
[61] P. C. Andrews, R. Frank, P. C. Junk, L. Kedzierski, I. Kumar, J. G. MacLellan, J. Inorg. Biochem. 2011, 105, 454.
| Crossref | GoogleScholarGoogle Scholar | 20851471PubMed |
[62] L. J. Stephens, S. Munuganti, R. N. Duffin, M. V. Werrett, P. C. Andrews, Inorg. Chem. 2020, 59, 3494.
| Crossref | GoogleScholarGoogle Scholar | 32129066PubMed |
[63] R. D. Abughazaleh, T. S. Tracy, in Wiley StatsRef: Statistics Reference Online 2014, pp. 1–12 (John Wiley & Sons, Ltd: Chichester).
[64] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795.
| Crossref | GoogleScholarGoogle Scholar |
[65] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59.
| Crossref | GoogleScholarGoogle Scholar |
[66] D. H. R. Barton, N. Y. Bhatnagar, J.-P. Finet, W. B. Motherwell, Tetrahedron 1986, 42, 3111.
| Crossref | GoogleScholarGoogle Scholar |
[67] D. Mansfeld, Synthese und Charakterisierung neuartiger Bismutsilanolate, Bismut-oxo-cluster und Bismutkoordinationspolymere 2009, Ph.D. thesis, Technischen Universität Chemnitz, Germany.
[68] G. M. Sheldrick, SADABS v2.30 2002 (University of Gottingen: Gottingen, Germany).
[69] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |
[70] G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |
[71] D. D. Oprian, in Photoreceptor Cells: Methods in Neurosciences (Ed. P. A. Hargrave) 1993, Vol. 15, pp. 301–306 (Academic Press Inc.): New York, NY.
[72] Y. C. Ong, V. L. Blair, L. Kedzierski, P. C. Andrews, Dalton Trans. 2014, 43, 12904.
| Crossref | GoogleScholarGoogle Scholar | 25019320PubMed |