Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Carbon Dioxide Methanation Over Nickel Catalysts Supported on Activated Carbon at Low Temperature

Le Minh Cam A C , Nguyen Thi Thu Ha A , Le Van Khu A , Nguyen Ngoc Ha A and Trevor C. Brown B
+ Author Affiliations
- Author Affiliations

A Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam.

B Chemistry, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.

C Corresponding author. Email: camlm@hnue.edu.vn

Australian Journal of Chemistry 72(12) 969-977 https://doi.org/10.1071/CH19355
Submitted: 29 July 2019  Accepted: 20 September 2019   Published: 20 November 2019

Abstract

The methanation of carbon over nickel catalysts supported on activated carbon was investigated using a continuous flow microreactor. Catalysts with nickel loadings of 5, 7, and 10 % were synthesised by incipient wetness impregnation methods and characterised using Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR), BET, XRD, SEM, TEM and H2-TPR. The methanation reaction was studied over the temperature range 200–500°C with a H2 to CO2 ratio of 4 : 1 in He and at 1 atm. With an increase in Ni content from 5 to 7 % both conversion of CO2 and CH4 selectivity increased. Increasing the nickel content to 10 %, however decreased conversion and selectivity due to the larger crystallite size and lower surface area of the catalyst. The most active catalyst with 7 % Ni does not deactivate during 15 h time on stream at 350°C. The high catalytic activity and stability of the studied catalysts is a consequence of the reducibility of Ni and a synergetic effect between the nickel active sites and the activated carbon surface.


References

[1]  M. Burkhardt, G. Busch, Appl. Energy 2013, 111, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  F. T. Zangeneh, S. Sahebdelfar, M. T. Ravanchi, J. Nat. Gas Chem. 2011, 20, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  R. Ladera, F. J. Pérez-Alonso, J. M. González-Carballo, M. Ojeda, S. Rojas, J. L. G. Fierro, Appl. Catal. B 2013, 142–143, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteria, Appl. Catal. B 2014, 152–153, 152.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  P. Sabatier, J. B. Senderens, C. R. Acad. Sci. Paris 1902, 134, 514.

[6]  S. Rahmani, M. Rezaei, F. Meshkani, J. Ind. Eng. Chem. 2014, 20, 1346.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Appl. Catal. B 2012, 113–114, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. Jacquemin, A. Beuls, P. Ruiz, Catal. Today 2010, 157, 462.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Schoder, U. Armbruster, A. Martin, Chem. Ing. Tech. 2013, 85, 344.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. Janke, M. S. Duyar, M. Hoskins, R. Farrauto, Appl. Catal. B 2014, 152–153, 184.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  G. Zhou, T. Wu, H. Xie, X. Zheng, Int. J. Hydrogen Energy 2013, 38, 10012.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Karelovic, P. Ruiz, J. Catal. 2013, 301, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Sharma, Z. P. Hu, P. Zhang, E. W. McFarland, H. Metiu, J. Catal. 2011, 278, 297.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J.-N. Park, E. W. McFarland, J. Catal. 2009, 266, 92.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  H. Y. Kim, H. M. Lee, J.-N. Park, J. Phys. Chem. C 2010, 114, 7128.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. C. D. da Silva, S. Letichevsky, L. E. P. Borges, L. G. Appel, Int. J. Hydrogen Energy 2012, 37, 8923.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, M. R. Sazegar, Appl. Catal. B 2014, 147, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. Razzaq, H. Zhu, L. Jiang, U. Muhammad, C. Li, S. Zhang, Ind. Eng. Chem. Res. 2013, 52, 2247.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Deleitenburg, A. Trovarelli, J. Catal. 1995, 156, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  K. Zhao, Z. Li, L. Bian, Front. Chem. Sci. Eng. 2016, 10, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C. Swalus, M. Jacquemin, C. Poleunis, P. Bertrand, P. Ruiz, Appl. Catal. B 2012, 125, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Scirè, C. Crisafulli, R. Maggiore, S. Minicò, S. Galvagno, Catal. Lett. 1998, 51, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. Eckle, H.-G. Anfang, R. J. Behm, J. Phys. Chem. C 2011, 115, 1361.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  I. Graca, L. V. González, M. C. Bacariza, A. Fernandes, C. Henriques, J. M. Lopes, M. F. Ribeiro, Appl. Catal. B 2014, 147, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Tada, T. Shimizu, H. Kameyama, T. Haneda, R. Kikuchi, Int. J. Hydrogen Energy 2012, 37, 5527.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  H. Takano, K. Izumiya, N. Kumagai, K. Hashimoto, Appl. Surf. Sci. 2011, 257, 8171.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S. Hwang, J. Lee, U. G. Hong, J. H. Baik, D. J. Koh, H. Lim, I. K. Song, J. Ind. Eng. Chem. 2013, 19, 698.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  E. Jwa, S. B. Lee, H. W. Lee, Y. S. Mok, Fuel Process. Technol. 2013, 108, 89.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. Liu, X. Zou, X. Wang, X. Lu, W. Ding, J. Nat. Gas Chem. 2012, 21, 703.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. Liu, W. Bing, X. Xue, F. Wang, B. Wang, S. He, Y. Zhang, M. Wei, Catal. Sci. Technol. 2016, 6, 3976.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  W. Wang, J. Gong, Front. Chem. Sci. Eng. 2011, 5, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. Xu, H. Zhao, H. Song, L. Chou, Int. J. Hydrogen Energy 2012, 37, 7497.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. Zhang, Z. Xin, X. Meng, M. Tao, Fuel 2013, 109, 693.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle, G. Haller, J. Catal. 2007, 249, 370.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  X. Yang, Wendurima, G. Gao, Q. Shi, X. Wang, J. Zhang, C. Han, J. Wang, H. Lu, J. Liu, M. Tong, Int. J. Hydrogen Energy 2014, 39, 3231.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  F.-W. Chang, M.-T. Tsay, S.-P. Liang, Appl. Catal., A 2001, 209, 217.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. Ocampo, B. Louis, A. C. Roger, Appl. Catal., A 2009, 369, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  M. Jacquemin, A. Beuls, P. Ruiz, Catal. Today 2010, 157, 462.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  N. N. Ha, T. T. H. Nguyen, L. V. Khu, L. M. Cam, J. Mol. Model. 2015, 21, 322.
         | Crossref | GoogleScholarGoogle Scholar | 26637187PubMed |

[40]  D. P. Vargas, L. Giraldo, J. C. Moreno-Piraján, Int. J. Mol. Sci. 2012, 13, 8388.
         | Crossref | GoogleScholarGoogle Scholar | 22942710PubMed |

[41]  B. C. Wood, S. Y. Bhide, D. Dutta, V. S. Kandagal, A. D. Pathak, S. N. Punnathanam, K. G. Ayappa, S. Narasimhan, J. Chem. Phys. 2012, 137, 054702.
         | Crossref | GoogleScholarGoogle Scholar | 22894366PubMed |

[42]  V. Tripkovic, M. Vanin, M. Karamad, M. E. Bjorketun, K. W. Jacobsen, K. S. Thygesen, J. Rossmeisl, J. Phys. Chem. C 2013, 117, 9187.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  Y. Jiao, A. Du, Z. Zhu, V. Rudolph, G. Q. Lu, S. C. Smith, Catal. Today 2011, 175, 271.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  S. A. Tawfik, X. Cui, S. Ringer, C. Stampfl, RSC Adv. 2015, 5, 50975.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 2012, 51, 1438.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  N. P. Wickramaratne, M. Jaroniec, ACS Appl. Mater. Interfaces 2013, 5, 1849.
         | Crossref | GoogleScholarGoogle Scholar | 23398600PubMed |

[47]  K. Li, S. Tian, J. Jiang, J. Wang, X. Chen, F. Yan, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 5223.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  M. C. Le, K. L. Van, T. H. T. Nguyen, N. H. Nguyen, J. Chem. 2017, 2017, 4361056.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  F.-W. Chang, M.-T. Tsay, S.-P. Liang, Appl. Catal., A 2001, 209, 217.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  Q. Huang, X. Xue, R. Zhou, J. Mol. Catal. Chem. 2010, 331, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  S. Roy, A. Cherevotan, S. C. Peter, ACS Energy Lett. 2018, 3, 1938.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  C. Janke, M. S. Duyar, M. Hoskins, R. Farrauto, Appl. Catal., A 2014, 152–153, 184.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  J. K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, C. Battocchio, G. Iucci, J. Mater. Sci. 2017, 52, 10331.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  J. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2449.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  J. K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, G. Iucci, C. Battocchio, S. Mobilio, S. Casciardi, R. Sisto, J. CO Util. 2018, 23, 200.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Appl. Catal. A Gen. 2015, 500, 12.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  Z. Hou, J. Gao, J. Guo, D. Liang, H. Lou, X. Zheng, J. Catal. 2007, 250, 331.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  Y. H. Hu, E. Ruckenstein, Catal. Lett. 1996, 36, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  S. Xu, X. Wang, Fuel 2005, 84, 563.
         | Crossref | GoogleScholarGoogle Scholar |