Carbon Dioxide Methanation Over Nickel Catalysts Supported on Activated Carbon at Low Temperature
Le Minh Cam A C , Nguyen Thi Thu Ha A , Le Van Khu A , Nguyen Ngoc Ha A and Trevor C. Brown BA Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam.
B Chemistry, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
C Corresponding author. Email: camlm@hnue.edu.vn
Australian Journal of Chemistry 72(12) 969-977 https://doi.org/10.1071/CH19355
Submitted: 29 July 2019 Accepted: 20 September 2019 Published: 20 November 2019
Abstract
The methanation of carbon over nickel catalysts supported on activated carbon was investigated using a continuous flow microreactor. Catalysts with nickel loadings of 5, 7, and 10 % were synthesised by incipient wetness impregnation methods and characterised using Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR), BET, XRD, SEM, TEM and H2-TPR. The methanation reaction was studied over the temperature range 200–500°C with a H2 to CO2 ratio of 4 : 1 in He and at 1 atm. With an increase in Ni content from 5 to 7 % both conversion of CO2 and CH4 selectivity increased. Increasing the nickel content to 10 %, however decreased conversion and selectivity due to the larger crystallite size and lower surface area of the catalyst. The most active catalyst with 7 % Ni does not deactivate during 15 h time on stream at 350°C. The high catalytic activity and stability of the studied catalysts is a consequence of the reducibility of Ni and a synergetic effect between the nickel active sites and the activated carbon surface.
References
[1] M. Burkhardt, G. Busch, Appl. Energy 2013, 111, 74.| Crossref | GoogleScholarGoogle Scholar |
[2] F. T. Zangeneh, S. Sahebdelfar, M. T. Ravanchi, J. Nat. Gas Chem. 2011, 20, 219.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. Ladera, F. J. Pérez-Alonso, J. M. González-Carballo, M. Ojeda, S. Rojas, J. L. G. Fierro, Appl. Catal. B 2013, 142–143, 241.
| Crossref | GoogleScholarGoogle Scholar |
[4] G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteria, Appl. Catal. B 2014, 152–153, 152.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. Sabatier, J. B. Senderens, C. R. Acad. Sci. Paris 1902, 134, 514.
[6] S. Rahmani, M. Rezaei, F. Meshkani, J. Ind. Eng. Chem. 2014, 20, 1346.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Appl. Catal. B 2012, 113–114, 2.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Jacquemin, A. Beuls, P. Ruiz, Catal. Today 2010, 157, 462.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Schoder, U. Armbruster, A. Martin, Chem. Ing. Tech. 2013, 85, 344.
| Crossref | GoogleScholarGoogle Scholar |
[10] C. Janke, M. S. Duyar, M. Hoskins, R. Farrauto, Appl. Catal. B 2014, 152–153, 184.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. Zhou, T. Wu, H. Xie, X. Zheng, Int. J. Hydrogen Energy 2013, 38, 10012.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. Karelovic, P. Ruiz, J. Catal. 2013, 301, 141.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Sharma, Z. P. Hu, P. Zhang, E. W. McFarland, H. Metiu, J. Catal. 2011, 278, 297.
| Crossref | GoogleScholarGoogle Scholar |
[14] J.-N. Park, E. W. McFarland, J. Catal. 2009, 266, 92.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Y. Kim, H. M. Lee, J.-N. Park, J. Phys. Chem. C 2010, 114, 7128.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. C. D. da Silva, S. Letichevsky, L. E. P. Borges, L. G. Appel, Int. J. Hydrogen Energy 2012, 37, 8923.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, M. R. Sazegar, Appl. Catal. B 2014, 147, 359.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Razzaq, H. Zhu, L. Jiang, U. Muhammad, C. Li, S. Zhang, Ind. Eng. Chem. Res. 2013, 52, 2247.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Deleitenburg, A. Trovarelli, J. Catal. 1995, 156, 171.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Zhao, Z. Li, L. Bian, Front. Chem. Sci. Eng. 2016, 10, 273.
| Crossref | GoogleScholarGoogle Scholar |
[21] C. Swalus, M. Jacquemin, C. Poleunis, P. Bertrand, P. Ruiz, Appl. Catal. B 2012, 125, 41.
| Crossref | GoogleScholarGoogle Scholar |
[22] S. Scirè, C. Crisafulli, R. Maggiore, S. Minicò, S. Galvagno, Catal. Lett. 1998, 51, 41.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Eckle, H.-G. Anfang, R. J. Behm, J. Phys. Chem. C 2011, 115, 1361.
| Crossref | GoogleScholarGoogle Scholar |
[24] I. Graca, L. V. González, M. C. Bacariza, A. Fernandes, C. Henriques, J. M. Lopes, M. F. Ribeiro, Appl. Catal. B 2014, 147, 101.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Tada, T. Shimizu, H. Kameyama, T. Haneda, R. Kikuchi, Int. J. Hydrogen Energy 2012, 37, 5527.
| Crossref | GoogleScholarGoogle Scholar |
[26] H. Takano, K. Izumiya, N. Kumagai, K. Hashimoto, Appl. Surf. Sci. 2011, 257, 8171.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. Hwang, J. Lee, U. G. Hong, J. H. Baik, D. J. Koh, H. Lim, I. K. Song, J. Ind. Eng. Chem. 2013, 19, 698.
| Crossref | GoogleScholarGoogle Scholar |
[28] E. Jwa, S. B. Lee, H. W. Lee, Y. S. Mok, Fuel Process. Technol. 2013, 108, 89.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Liu, X. Zou, X. Wang, X. Lu, W. Ding, J. Nat. Gas Chem. 2012, 21, 703.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Liu, W. Bing, X. Xue, F. Wang, B. Wang, S. He, Y. Zhang, M. Wei, Catal. Sci. Technol. 2016, 6, 3976.
| Crossref | GoogleScholarGoogle Scholar |
[31] W. Wang, J. Gong, Front. Chem. Sci. Eng. 2011, 5, 2.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. Xu, H. Zhao, H. Song, L. Chou, Int. J. Hydrogen Energy 2012, 37, 7497.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. Zhang, Z. Xin, X. Meng, M. Tao, Fuel 2013, 109, 693.
| Crossref | GoogleScholarGoogle Scholar |
[34] G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle, G. Haller, J. Catal. 2007, 249, 370.
| Crossref | GoogleScholarGoogle Scholar |
[35] X. Yang, Wendurima, G. Gao, Q. Shi, X. Wang, J. Zhang, C. Han, J. Wang, H. Lu, J. Liu, M. Tong, Int. J. Hydrogen Energy 2014, 39, 3231.
| Crossref | GoogleScholarGoogle Scholar |
[36] F.-W. Chang, M.-T. Tsay, S.-P. Liang, Appl. Catal., A 2001, 209, 217.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Ocampo, B. Louis, A. C. Roger, Appl. Catal., A 2009, 369, 90.
| Crossref | GoogleScholarGoogle Scholar |
[38] M. Jacquemin, A. Beuls, P. Ruiz, Catal. Today 2010, 157, 462.
| Crossref | GoogleScholarGoogle Scholar |
[39] N. N. Ha, T. T. H. Nguyen, L. V. Khu, L. M. Cam, J. Mol. Model. 2015, 21, 322.
| Crossref | GoogleScholarGoogle Scholar | 26637187PubMed |
[40] D. P. Vargas, L. Giraldo, J. C. Moreno-Piraján, Int. J. Mol. Sci. 2012, 13, 8388.
| Crossref | GoogleScholarGoogle Scholar | 22942710PubMed |
[41] B. C. Wood, S. Y. Bhide, D. Dutta, V. S. Kandagal, A. D. Pathak, S. N. Punnathanam, K. G. Ayappa, S. Narasimhan, J. Chem. Phys. 2012, 137, 054702.
| Crossref | GoogleScholarGoogle Scholar | 22894366PubMed |
[42] V. Tripkovic, M. Vanin, M. Karamad, M. E. Bjorketun, K. W. Jacobsen, K. S. Thygesen, J. Rossmeisl, J. Phys. Chem. C 2013, 117, 9187.
| Crossref | GoogleScholarGoogle Scholar |
[43] Y. Jiao, A. Du, Z. Zhu, V. Rudolph, G. Q. Lu, S. C. Smith, Catal. Today 2011, 175, 271.
| Crossref | GoogleScholarGoogle Scholar |
[44] S. A. Tawfik, X. Cui, S. Ringer, C. Stampfl, RSC Adv. 2015, 5, 50975.
| Crossref | GoogleScholarGoogle Scholar |
[45] A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 2012, 51, 1438.
| Crossref | GoogleScholarGoogle Scholar |
[46] N. P. Wickramaratne, M. Jaroniec, ACS Appl. Mater. Interfaces 2013, 5, 1849.
| Crossref | GoogleScholarGoogle Scholar | 23398600PubMed |
[47] K. Li, S. Tian, J. Jiang, J. Wang, X. Chen, F. Yan, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 5223.
| Crossref | GoogleScholarGoogle Scholar |
[48] M. C. Le, K. L. Van, T. H. T. Nguyen, N. H. Nguyen, J. Chem. 2017, 2017, 4361056.
| Crossref | GoogleScholarGoogle Scholar |
[49] F.-W. Chang, M.-T. Tsay, S.-P. Liang, Appl. Catal., A 2001, 209, 217.
| Crossref | GoogleScholarGoogle Scholar |
[50] Q. Huang, X. Xue, R. Zhou, J. Mol. Catal. Chem. 2010, 331, 130.
| Crossref | GoogleScholarGoogle Scholar |
[51] S. Roy, A. Cherevotan, S. C. Peter, ACS Energy Lett. 2018, 3, 1938.
| Crossref | GoogleScholarGoogle Scholar |
[52] C. Janke, M. S. Duyar, M. Hoskins, R. Farrauto, Appl. Catal., A 2014, 152–153, 184.
| Crossref | GoogleScholarGoogle Scholar |
[53] J. K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, C. Battocchio, G. Iucci, J. Mater. Sci. 2017, 52, 10331.
| Crossref | GoogleScholarGoogle Scholar |
[54] J. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2449.
| Crossref | GoogleScholarGoogle Scholar |
[55] J. K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, G. Iucci, C. Battocchio, S. Mobilio, S. Casciardi, R. Sisto, J. CO Util. 2018, 23, 200.
| Crossref | GoogleScholarGoogle Scholar |
[56] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Appl. Catal. A Gen. 2015, 500, 12.
| Crossref | GoogleScholarGoogle Scholar |
[57] Z. Hou, J. Gao, J. Guo, D. Liang, H. Lou, X. Zheng, J. Catal. 2007, 250, 331.
| Crossref | GoogleScholarGoogle Scholar |
[58] Y. H. Hu, E. Ruckenstein, Catal. Lett. 1996, 36, 145.
| Crossref | GoogleScholarGoogle Scholar |
[59] S. Xu, X. Wang, Fuel 2005, 84, 563.
| Crossref | GoogleScholarGoogle Scholar |