Pd Nanoparticles Incorporated Within a Zr-Based Metal–Organic Framework/Reduced Graphene Oxide Multifunctional Composite for Efficient Visible-Light-Promoted Benzyl Alcohol Oxidation
Ting Li A B , Tian Tian A , Fangyuan Chen A , Xiang Liu A C D and Xiaohua Zhao B DA Zhenjiang Key Laboratory of Functional Chemistry, and Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China.
B School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
C Biofuels Institute of Jiangsu University, Zhenjiang 212013, China.
D Corresponding author. Email: liuxiang0222@126.com; Zhao12_19@163.com
Australian Journal of Chemistry 72(5) 334-340 https://doi.org/10.1071/CH18387
Submitted: 5 August 2018 Accepted: 19 December 2018 Published: 17 January 2019
Abstract
Metal–organic frameworks (MOFs) in photocatalysis oxidation reactions have been arousing great interest because of their unique properties. Zr-based MOFs (mainly 1,4-dicarboxybenzene MOF (UiO-66)) appear to be very attractive candidates. In this study, a Pd@UiO-66/reduced graphene oxide (rGO) nanocomposite was successfully prepared via a facile solvothermal method and was characterised by several techniques, including field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, and photoluminescence (PL) spectroscopy. Subsequently, the as-obtained Pd@UiO-66/rGO composite was used as a photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde with O2 under visible light irradiation (>420 nm); it exhibited superior photocatalytic activity due to the synergistic effect of coupling Pd nanoparticles (NPs) with UiO-66 and rGO. Importantly, the Pd@UiO-66/rGO composite showed high stability and considerable recyclability to preserve most of its initial photocatalytic activity after five cycles of the oxidation reaction.
References
[1] N. Al-Rifai, P. J. Miedziak, M. Morad, M. Sankar, C. Waldron, S. Cattaneo, E. Cao, S. Pattisson, D. Morgan, D. Bethell, G. J. Hutchings, A. Gavriilidis, Ind. Eng. Chem. Res. 2017, 56, 12984.| Crossref | GoogleScholarGoogle Scholar |
[2] M. Li, X. R. Fu, L. Peng, L. Bai, S. J. Wu, Q. B. Kan, J. Q. Guan, ChemistrySelect 2017, 2, 9486.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. J. Liu, S. H. Zou, L. F. Lu, H. T. Zhao, L. P. Xiao, J. Fan, Catal. Commun. 2017, 99, 6.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. J. Liu, Q. H. Yuan, H. T. Zhao, S. H. Zou, Catal. Lett. 2018, 148, 1093.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. J. Ndolomingo, R. Meijboom, Appl. Surf. Sci. 2017, 398, 19.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. C. Hao, L. Zhang, W. Z. Wang, S. W. Zeng, Catal. Sci. Technol. 2018, 8, 1229.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. C. Colmenares, W. Ouyang, M. Ojeda, E. Kuna, O. Chernyayeva, D. Lisovytskiy, S. De, R. Luque, A. M. Balu, Appl. Catal. B 2016, 183, 107.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Y. Sun, Y. X. Han, H. Y. Fu, X. L. Qu, Z. Y. Xu, S. R. Zheng, Chem. Eng. J. 2017, 313, 1.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. W. Cao, H. Li, Y. Li, B. C. Zhu, J. G. Yu, ACS Sustain. Chem. & Eng. 2018, 6, 6478.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. Liu, P. Zhang, B. Tian, J. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 13849.
| Crossref | GoogleScholarGoogle Scholar | 26057028PubMed |
[11] K. Cerdan, W. Ouyang, J. C. Colmenares, M. J. Muñoz-Batista, R. Luque, A. M. Balu, Chem. Eng. Sci. 2019, 194, 78.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. J. Lima, P. B. Tavares, A. M. T. Silva, C. G. Silva, J. L. Faria, Catal. Today 2017, 287, 70.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Abedi, A. Morsali, ACS Catal. 2014, 4, 1398.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Y. Chen, Y. Peng, H. Wang, Z. Z. Gua, C. Y. Duana, Chem. Commun. 2014, 50, 8651.
| Crossref | GoogleScholarGoogle Scholar |
[15] Z. W. Yang, X. Q. Xu, X. X. Liang, C. Lei, Y. L. Wei, P. Q. He, B. L. Lv, H. C. Ma, Z. Q. Lei, Appl. Catal. B 2016, 198, 112.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. Azarifar, R. Ghorbani-Vaghei, S. Daliran, A. R. Oveisi, ChemCatChem 2017, 9, 1992.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Cai, J. Y. Lu, Q. Y. Chen, L. L. Qu, Y. Q. Lu, G. F. Gao, New J. Chem. 2017, 41, 3882.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649.
| Crossref | GoogleScholarGoogle Scholar | 23903996PubMed |
[19] F. Y. Nian, Y. F. Huang, M. R. Song, J. J. Chen, J. P. Xue, J. Mater. Chem. B 2017, 5, 6227.
| Crossref | GoogleScholarGoogle Scholar |
[20] L. J. Shen, S. J. Liang, W. M. Wu, R. W. Liang, L. Wu, J. Mater. Chem. A 2013, 1, 11473.
| Crossref | GoogleScholarGoogle Scholar |
[21] Z. Sha, J. S. Wu, RSC Adv. 2015, 5, 39592.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interface Sci. 2017, 497, 126.
| Crossref | GoogleScholarGoogle Scholar | 28282564PubMed |
[23] B. B. Liu, X. J. Liu, J. Y. Liu, C. J. Feng, Z. Li, C. Li, Y. Y. Gong, L. K. Pan, S. Q. Xu, C. Q. Sun, Appl. Catal. B 2018, 226, 234.
| Crossref | GoogleScholarGoogle Scholar |
[24] Z. Z. Gu, L. Y. Chen, B. H. Duan, Q. Luo, J. Liu, C. Y. Duan, Chem. Commun. 2016, 52, 116.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. H. Zhang, L. H. Ai, J. Jiang, Ind. Eng. Chem. Res. 2015, 54, 153.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. L. Liu, M. D. Rojas-Andrade, G. Chata, Y. Peng, G. Roseman, J. E. Lu, G. L. Millhauser, C. Saltikov, S. Chen, Nanoscale 2018, 10, 158.
| Crossref | GoogleScholarGoogle Scholar |
[27] X. C. Meng, Z. Z. Li, Z. S. Zhang, Chemosphere 2018, 198, 1.
| Crossref | GoogleScholarGoogle Scholar |
[28] X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Appl. Catal. B 2018, 228, 47.
| Crossref | GoogleScholarGoogle Scholar |
[29] W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y. R. Chi, Y. Yang, F. Huo, Adv. Mater. 2014, 26, 4056.
| Crossref | GoogleScholarGoogle Scholar | 24710716PubMed |
[30] N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater. 2015, 25, 5360.
| Crossref | GoogleScholarGoogle Scholar |
[32] X. H. Zhao, X. Liu, Z. Y. Zhang, X. Liu, W. Zhang, RSC Adv. 2016, 6, 92011.
| Crossref | GoogleScholarGoogle Scholar |
[33] Y. J. Li, X. L. Shang, C. H. Li, X. M. Huang, J. J. Zheng, Water Sci. Technol. 2018, 77, 1441.
| Crossref | GoogleScholarGoogle Scholar |
[34] Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144.
| Crossref | GoogleScholarGoogle Scholar |
[35] Y. Huang, S. Liu, Z. Lin, W. Li, X. Li, R. Cao, J. Catal. 2012, 292, 111.
| Crossref | GoogleScholarGoogle Scholar |
[36] S.-T. Gao, W. Liu, C. Feng, N.-Z. Shang, C. Wang, Catal. Sci. Technol. 2016, 6, 869.
| Crossref | GoogleScholarGoogle Scholar |
[37] R. Lin, L. J. Shen, Z. Y. Ren, W. M. Wu, Y. X. Tan, H. R. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Zhang, S. Meng, X. Ye, C. Ling, S. Zhang, X. Fu, S. Chen, Appl. Catal. B 2017, 218, 420.
| Crossref | GoogleScholarGoogle Scholar |
[39] C. Wang, Y. Xue, P. F. Wang, Y. H. Ao, J. Alloys Compd. 2018, 748, 314.
| Crossref | GoogleScholarGoogle Scholar |