Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Pd Nanoparticles Incorporated Within a Zr-Based Metal–Organic Framework/Reduced Graphene Oxide Multifunctional Composite for Efficient Visible-Light-Promoted Benzyl Alcohol Oxidation

Ting Li A B , Tian Tian A , Fangyuan Chen A , Xiang Liu A C D and Xiaohua Zhao B D
+ Author Affiliations
- Author Affiliations

A Zhenjiang Key Laboratory of Functional Chemistry, and Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China.

B School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

C Biofuels Institute of Jiangsu University, Zhenjiang 212013, China.

D Corresponding author. Email: liuxiang0222@126.com; Zhao12_19@163.com

Australian Journal of Chemistry 72(5) 334-340 https://doi.org/10.1071/CH18387
Submitted: 5 August 2018  Accepted: 19 December 2018   Published: 17 January 2019

Abstract

Metal–organic frameworks (MOFs) in photocatalysis oxidation reactions have been arousing great interest because of their unique properties. Zr-based MOFs (mainly 1,4-dicarboxybenzene MOF (UiO-66)) appear to be very attractive candidates. In this study, a Pd@UiO-66/reduced graphene oxide (rGO) nanocomposite was successfully prepared via a facile solvothermal method and was characterised by several techniques, including field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, and photoluminescence (PL) spectroscopy. Subsequently, the as-obtained Pd@UiO-66/rGO composite was used as a photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde with O2 under visible light irradiation (>420 nm); it exhibited superior photocatalytic activity due to the synergistic effect of coupling Pd nanoparticles (NPs) with UiO-66 and rGO. Importantly, the Pd@UiO-66/rGO composite showed high stability and considerable recyclability to preserve most of its initial photocatalytic activity after five cycles of the oxidation reaction.


References

[1]  N. Al-Rifai, P. J. Miedziak, M. Morad, M. Sankar, C. Waldron, S. Cattaneo, E. Cao, S. Pattisson, D. Morgan, D. Bethell, G. J. Hutchings, A. Gavriilidis, Ind. Eng. Chem. Res. 2017, 56, 12984.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Li, X. R. Fu, L. Peng, L. Bai, S. J. Wu, Q. B. Kan, J. Q. Guan, ChemistrySelect 2017, 2, 9486.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. J. Liu, S. H. Zou, L. F. Lu, H. T. Zhao, L. P. Xiao, J. Fan, Catal. Commun. 2017, 99, 6.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. J. Liu, Q. H. Yuan, H. T. Zhao, S. H. Zou, Catal. Lett. 2018, 148, 1093.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. J. Ndolomingo, R. Meijboom, Appl. Surf. Sci. 2017, 398, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. C. Hao, L. Zhang, W. Z. Wang, S. W. Zeng, Catal. Sci. Technol. 2018, 8, 1229.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. C. Colmenares, W. Ouyang, M. Ojeda, E. Kuna, O. Chernyayeva, D. Lisovytskiy, S. De, R. Luque, A. M. Balu, Appl. Catal. B 2016, 183, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Y. Sun, Y. X. Han, H. Y. Fu, X. L. Qu, Z. Y. Xu, S. R. Zheng, Chem. Eng. J. 2017, 313, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. W. Cao, H. Li, Y. Li, B. C. Zhu, J. G. Yu, ACS Sustain. Chem. & Eng. 2018, 6, 6478.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. Liu, P. Zhang, B. Tian, J. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 13849.
         | Crossref | GoogleScholarGoogle Scholar | 26057028PubMed |

[11]  K. Cerdan, W. Ouyang, J. C. Colmenares, M. J. Muñoz-Batista, R. Luque, A. M. Balu, Chem. Eng. Sci. 2019, 194, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. J. Lima, P. B. Tavares, A. M. T. Silva, C. G. Silva, J. L. Faria, Catal. Today 2017, 287, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Abedi, A. Morsali, ACS Catal. 2014, 4, 1398.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  L. Y. Chen, Y. Peng, H. Wang, Z. Z. Gua, C. Y. Duana, Chem. Commun. 2014, 50, 8651.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Z. W. Yang, X. Q. Xu, X. X. Liang, C. Lei, Y. L. Wei, P. Q. He, B. L. Lv, H. C. Ma, Z. Q. Lei, Appl. Catal. B 2016, 198, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. Azarifar, R. Ghorbani-Vaghei, S. Daliran, A. R. Oveisi, ChemCatChem 2017, 9, 1992.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Cai, J. Y. Lu, Q. Y. Chen, L. L. Qu, Y. Q. Lu, G. F. Gao, New J. Chem. 2017, 41, 3882.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649.
         | Crossref | GoogleScholarGoogle Scholar | 23903996PubMed |

[19]  F. Y. Nian, Y. F. Huang, M. R. Song, J. J. Chen, J. P. Xue, J. Mater. Chem. B 2017, 5, 6227.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. J. Shen, S. J. Liang, W. M. Wu, R. W. Liang, L. Wu, J. Mater. Chem. A 2013, 1, 11473.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Z. Sha, J. S. Wu, RSC Adv. 2015, 5, 39592.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interface Sci. 2017, 497, 126.
         | Crossref | GoogleScholarGoogle Scholar | 28282564PubMed |

[23]  B. B. Liu, X. J. Liu, J. Y. Liu, C. J. Feng, Z. Li, C. Li, Y. Y. Gong, L. K. Pan, S. Q. Xu, C. Q. Sun, Appl. Catal. B 2018, 226, 234.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Z. Z. Gu, L. Y. Chen, B. H. Duan, Q. Luo, J. Liu, C. Y. Duan, Chem. Commun. 2016, 52, 116.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  C. H. Zhang, L. H. Ai, J. Jiang, Ind. Eng. Chem. Res. 2015, 54, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. L. Liu, M. D. Rojas-Andrade, G. Chata, Y. Peng, G. Roseman, J. E. Lu, G. L. Millhauser, C. Saltikov, S. Chen, Nanoscale 2018, 10, 158.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  X. C. Meng, Z. Z. Li, Z. S. Zhang, Chemosphere 2018, 198, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Appl. Catal. B 2018, 228, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y. R. Chi, Y. Yang, F. Huo, Adv. Mater. 2014, 26, 4056.
         | Crossref | GoogleScholarGoogle Scholar | 24710716PubMed |

[30]  N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater. 2015, 25, 5360.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  X. H. Zhao, X. Liu, Z. Y. Zhang, X. Liu, W. Zhang, RSC Adv. 2016, 6, 92011.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Y. J. Li, X. L. Shang, C. H. Li, X. M. Huang, J. J. Zheng, Water Sci. Technol. 2018, 77, 1441.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Huang, S. Liu, Z. Lin, W. Li, X. Li, R. Cao, J. Catal. 2012, 292, 111.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  S.-T. Gao, W. Liu, C. Feng, N.-Z. Shang, C. Wang, Catal. Sci. Technol. 2016, 6, 869.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. Lin, L. J. Shen, Z. Y. Ren, W. M. Wu, Y. X. Tan, H. R. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. Zhang, S. Meng, X. Ye, C. Ling, S. Zhang, X. Fu, S. Chen, Appl. Catal. B 2017, 218, 420.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  C. Wang, Y. Xue, P. F. Wang, Y. H. Ao, J. Alloys Compd. 2018, 748, 314.
         | Crossref | GoogleScholarGoogle Scholar |