Crystal Polymorphs and Multiple Crystallization Pathways of Highly Pressurized 1-Ethyl-3-Methylimidazolium Nitrate
Hiroshi Abe A D , Takahiro Takekiyo B , Yukihiro Yoshimura B , Nozomu Hamaya C and Shinichiro Ozawa AA Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan.
B Department of Applied Chemistry, National Defense Academy, Yokosuka 239-8686, Japan.
C Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan.
D Corresponding author. Email: ab@nda.ac.jp
Australian Journal of Chemistry 72(2) 87-92 https://doi.org/10.1071/CH18368
Submitted: 28 July 2018 Accepted: 15 September 2018 Published: 9 October 2018
Abstract
Crystal polymorphs and multiple crystallization pathways of a room-temperature ionic liquid (RTIL) were observed only under high pressure (HP). The RTIL was 1-ethyl-3-methylimidazolium nitrate, [C2mim][NO3]. The HP-crystal polymorphs were related to conformations of the C2mim+ cation, and the HP-crystal pathways determined by the presence or absence of the planar′ (P′) conformation of the C2mim+ cation were switched at the bifurcation pressure (PB). Above PB, modulated crystal structures derived from the HP-inherent P′ conformer. Simultaneous X-ray diffraction and differential scanning calorimetry measurements, accompanied by optical microscope observations, confirmed the normal low-temperature crystallization of [C2mim][NO3] under ambient pressure.
References
[1] E. B. Jones, V. Stevanović, Phys. Rev. B 2017, 96, 184101.| Crossref | GoogleScholarGoogle Scholar |
[2] B.-R. Chen, W. Sun, D. A. Kitchaev, J. S. Mangum, V. Thampy, L. M. Garten, D. S. Ginley, B. P. Gorman, K. H. Stone, G. Ceder, M. F. Toney, L. T. Schelhas, Nat. Commun. 2018, 9, 2553.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Lee, H. S. Wi, W. Jo, Y. C. Cho, H. H. Lee, S.-Y. Jeong, Y.-I. Kim, G. W. Lee, Proc. Nat. Acad. Sci. 2016, 113, 13618.
| Crossref | GoogleScholarGoogle Scholar |
[4] Z. Wang, J. Ju, J. Yang, Z. Ma, D. Liu, K. Cui, H. Yang, J. Chang, N. Huang, L. Li, Sci. Rep. 2016, 6, 32968.
| Crossref | GoogleScholarGoogle Scholar |
[5] B. Li, D. Zhou, Y. Han, Nat. Rev. Mater. 2016, 1, 15011.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. N. A. Canongia Lopes, A. A. H. Pàdua, J. Phys. Chem. B 2006, 110, 3330.
| Crossref | GoogleScholarGoogle Scholar |
[7] H. V. R. Annapureddy, H. K. Kashyap, P. M. De Biase, C. J. Margulis, J. Phys. Chem. B 2010, 114, 16838.
| Crossref | GoogleScholarGoogle Scholar |
[8] C. E. S. Bernardes, K. Shimizu, A. I. M. C. Lobo Ferreira, L. M. N. B. F. Santos, J. N. Canongia Lopes, J. Phys. Chem. B 2014, 118, 6885.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. Triolo, O. Russina, H.-J. Bleif, E. Di Cola, J. Phys. Chem. B 2007, 111, 4641.
| Crossref | GoogleScholarGoogle Scholar |
[10] O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L. G. Hines, R. A. Bartsch, E. L. Quitevis, N. Plechkova, K. R. Seddon, J. Phys. Condens. Matter 2009, 21, 424121.
| Crossref | GoogleScholarGoogle Scholar |
[11] F. Nemoto, M. Kofu, O. Yamamuro, J. Phys. Chem. B 2015, 119, 5028.
| Crossref | GoogleScholarGoogle Scholar |
[12] O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi, M. Nagao, J. Chem. Phys. 2011, 135, 054508.
| Crossref | GoogleScholarGoogle Scholar |
[13] W. A. Henderson, P. Fylstra, H. C. De Long, P. C. Trulove, S. Parsons, Phys. Chem. Chem. Phys. 2012, 14, 16041.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. Abe, M. Aono, T. Takekiyo, Y. Yoshimura, A. Shimizu, J. Mol. Liq. 2017, 241, 301.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Abe, T. Takekiyo, Y. Yoshimura, A. Shimizu, S. Ozawa, J. Mol. Liq. 2018, 269, 733.
| Crossref | GoogleScholarGoogle Scholar |
[16] T. Endo, H. Masu, K. Fujii, T. Morita, H. Seki, S. Sen, K. Nishikawa, Cryst. Growth Des. 2013, 13, 5383.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. Endo, T. Kato, K. Tozaki, K. Nishikawa, J. Phys. Chem. B 2010, 114, 407.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Saouane, S. E. Norman, C. Hardacre, F. P. A. Fabbiani, Chem. Sci. 2013, 4, 1270.
| Crossref | GoogleScholarGoogle Scholar |
[19] H. Abe, T. Takekiyo, N. Hatano, M. Shigemi, N. Hamaya, Y. Yoshimura, J. Phys. Chem. B 2014, 118, 1138.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Zhao, X. Liu, X. Lu, S. Zhang, J. Wang, H. Wang, G. Gurau, R. D. Rogers, L. Su, H. Li, J. Phys. Chem. B 2012, 116, 10876.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. Abe, N. Hamaya, Y. Koyama, H. Kishimura, T. Takekiyo, Y. Yoshimura, D. Wakabayashi, N. Funamori, K. Matsuishi, ChemPhysChem 2018, 19, 1441.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc., Chem. Commun. 1992, 965.
[23] Y. Yoshimura, T. Takekiyo, H. Abe, N. Hamaya, J. Mol. Liq. 2015, 206, 89.
| Crossref | GoogleScholarGoogle Scholar |
[24] O. Shimomura, K. Takemura, H. Fujihisa, Y. Fujii, Y. Ohishi, T. Kikegawa, Y. Amemiya, T. Matsushita, Rev. Sci. Instrum. 1992, 63, 967.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. Oishi-Tomiyasu, J. Appl. Cryst. 2014, 47, 593.
| Crossref | GoogleScholarGoogle Scholar |
[26] V. Favre-Nicolin, R. C. Ïerny, J. Appl. Cryst. 2002, 35, 734.
| Crossref | GoogleScholarGoogle Scholar |