Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fluctuations and Mixing State of an Aqueous Solution of the Ionic Liquid Tetrabutylphosphonium Trifluoroacetate around the Critical Point

Ayako Nitta A , Takeshi Morita A C , Hiroyuki Ohno B and Keiko Nishikawa A
+ Author Affiliations
- Author Affiliations

A Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.

B Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Japan.

C Corresponding author. Email: moritat@faculty.chiba-u.jp

Australian Journal of Chemistry 72(2) 93-100 https://doi.org/10.1071/CH18380
Submitted: 31 July 2018  Accepted: 22 October 2018   Published: 16 November 2018

Abstract

Aqueous solutions of ionic liquids have unique mixing states. Fluctuations are useful for understanding the inhomogeneity of the mixing states. In this study, an aqueous solution of tetrabutylphosphonium trifluoroacetate, ([P4,4,4,4]CF3COO), which exhibits a lower-critical-solution-temperature-type phase transition, was investigated. Focussing on the concentration and temperature range near the critical point, the fluctuations were evaluated by combining three kinds of experimentally obtained data: small-angle X-ray scattering intensity, partial molar volumes, and isothermal compressibility. Using Kirkwood–Buff integrals, individual density fluctuations of water and [P4,4,4,4]CF3COO were calculated, and these suggested that a large number of water molecules hydrated [P4,4,4,4]CF3COO ion pairs, and the hydrated ion pairs aggregated near the critical point. The relationship between the mesoscopic fluctuations and the macroscopic phase transition was clarified by drawing counter maps of the fluctuations in the phase diagrams.


References

[1]  R. D. Rogers, K. R. Seddon, Science 2003, 302, 792.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. R. Seddon, Nat. Mater. 2003, 2, 363.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem. Commun. 1992, 965.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. Welton, Chem. Rev. 1999, 99, 2071.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke, J. Chem. Eng. Data 2004, 49, 954.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Y. Shimizu, Y. Wachi, K. Fujii, M. Imanari, K. Nishikawa, J. Phys. Chem. B 2016, 120, 5710.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  K. N. Marsh, J. A. Boxall, R. Lichtenthaler, Fluid Phase Equilib. 2004, 219, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  K. N. Marsh, A. Deev, A. C.-T. Wu, E. Tran, A. Klamt, Korean J. Chem. Eng. 2002, 19, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Stoppa, J. Hunger, R. Buchner, J. Chem. Eng. Data 2009, 54, 472.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. A. S. Trindade, Z. P. Visak, R. Bogel-Łukasik, E. Bogel-Łukasik, M. N. da Ponte, Ind. Eng. Chem. Res. 2010, 49, 4850.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  V. Najdanovic-Visak, J. M. S. S. Esperança, L. P. N. Rebelo, M. Nunes da Ponte, H. J. R. Guedes, K. R. Seddon, H. C. de Sousa, J. Szydlowski, J. Phys. Chem. B 2003, 107, 12797.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. B. Shiflett, A. Yokozeki, J. Chem. Eng. Data 2007, 52, 1302.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. L. Anthony, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2001, 105, 10942.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. Kohno, H. Ohno, Chem. Commun. 2012, 7119.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperança, H. J. R. Guedes, H. C. de Sousa, Green Chem. 2004, 6, 369.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. M. Lin, H. Y. Tien, Y. T. Hone, M. J. Lee, Fluid Phase Equilib. 2007, 253, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Kohno, H. Arai, S. Saita, H. Ohno, Aust. J. Chem. 2011, 64, 1560.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. Nishikawa, T. Morita, Mol. Sci. 2012, 6, A0054.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  N. Ito, T. Fujiyama, Y. Udagawa, Bull. Chem. Soc. Jpn. 1983, 56, 379.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. Almásy, M. Turmine, A. Perera, J. Phys. Chem. B 2008, 112, 2382.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  T. Morita, H. Murai, S. Kase, K. Nishikawa, Chem. Phys. Lett. 2012, 543, 68.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  H. Hayashi, Y. Udagawa, Bull. Chem. Soc. Jpn. 1992, 65, 600.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  K. Nishikawa, T. Iijima, J. Phys. Chem. 1990, 94, 6227.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  H. Hayashi, K. Nishikawa, T. Iijima, J. Phys. Chem. 1990, 94, 8334.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. Hu, C. A. Haynes, A. H. Wu, C. M. Cheung, M. M. Chen, E. G. Yee, T. Ichioka, K. Nishikawa, P. Westh, Y. Koga, Can. J. Chem. 2003, 81, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  K. Nishikawa, T. Iijima, J. Phys. Chem. 1993, 97, 10824.

[28]  K. Nishikawa, Y. Kasahara, T. Ichioka, J. Phys. Chem. B 2002, 106, 693.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Y. Koga, K. Nishikawa, K. Yoshino, I. Tanaka, Y. Xu, Y. Amemiya, Chem. Phys. Lett. 1994, 228, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. Nitta, T. Morita, S. Saita, Y. Kohno, H. Ohno, K. Nishikawa, Chem. Phys. Lett. 2015, 628, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. Morita, K. Miki, A. Nitta, H. Ohgi, P. Westh, Phys. Chem. Chem. Phys. 2015, 17, 22170.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H. V. R. Annapureddy, L. X. Dang, J. Phys. Chem. B 2013, 117, 8555.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  N. F. A. van der Vegt, K. Haldrup, S. Roke, J. Zheng, M. Lund, H. J. Bakker, Chem. Rev. 2016, 116, 7626.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. B. Bhatia, D. E. Thornton, Phys. Rev. B: Condens. Matter Mater. Phys. 1970, 2, 3004.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  H. Hayashi, K. Nishikawa, T. Iijima, J. Appl. Cryst. 1990, 23, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y. Koga, Solution Thermodynamics and its Application to Aqueous Solutions: A Differential Approach 2007 (Elsevier Science: Amsterdam).

[37]  T. Zemb, P. Lindner, Neutron, X-Rays and Light: Scattering Methods Applied to Soft Condensed Matter 2002 (Elsevier: Amsterdam).

[38]  R.-J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science 2000 (Oxford University Press: Oxford).

[39]  J. G. Kirkwood, F. P. Buff, J. Chem. Phys. 1951, 19, 774.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  P. E. Smith, E. Matteoli, J. P. O’Connell, Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics 2013 (CRC Press: Boca Raton, FL).

[41]  Y. Marcus, Monatsh. Chem. 2001, 132, 1387.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  K. Nishikawa, Chem. Phys. Lett. 1986, 132, 50.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  A. Ben-Naim, J. Chem. Phys. 1977, 67, 4884.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  N. Shimizu, T. Mori, N. Igarashi, H. Ohta, Y. Nagatani, T. Kosuge, K. Ito, J. Phys. Conf. Ser. 2013, 425, 202008.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  T. Morita, Y. Tanaka, K. Ito, Y. Takahashi, K. Nishikawa, J. Appl. Cryst. 2007, 40, 791.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena 1987 (Oxford University Press: Oxford).

[47]  H. V. R. Annapureddy, H. K. Kashyap, P. M. De Biase, C. J. Margulis, J. Phys. Chem. B 2010, 114, 16838.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  J. N. A. C. Lopes, A. A. H. Padua, J. Phys. Chem. B 2006, 110, 3330.

[49]  J. N. Canongia Lopes, M. F. Costa Gomes, A. A. H. Pádua, J. Phys. Chem. B 2006, 110, 16816.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  A. Triolo, O. Russina, H.-J. Bleif, E. Di Cola, J. Phys. Chem. B 2007, 111, 4641.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  A. Triolo, O. Russina, B. Fazio, G. B. Appetecchi, M. Carewska, S. Passerini, J. Chem. Phys. 2009, 130, 164521.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  D. Pečar, V. Doleček, Fluid Phase Equilib. 2005, 230, 36.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  A. Nitta, T. Morita, K. Nishikawa, Y. Koga, Phys. Chem. Chem. Phys. 2017, 19, 16888.
         | Crossref | GoogleScholarGoogle Scholar |