Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Chemoenzymatic Syntheses of Some Analogues of the Tricarbocyclic Core of the Anti-Bacterial Agent Platencin and the Biological Evaluation of Certain of their N-Arylpropionamide Derivatives*

Rehmani N. Muhammad A , Ee Ling Chang A , Alistair G. Draffan B , Anthony C. Willis A , Paul D. Carr A and Martin G. Banwell A C
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.

B Biota Scientific Management Pty Ltd, Melbourne, Vic. 3168, Australia.

C Corresponding author. Email: Martin.Banwell@anu.edu.au

Australian Journal of Chemistry 71(9) 655-672 https://doi.org/10.1071/CH18145
Submitted: 6 April 2018  Accepted: 18 May 2018   Published: 6 July 2018

Abstract

A range of structural variations on the tricarbocyclic core 2 of the anti-bacterial agent platencin 1, including those represented by compounds 14, 15, and 27, have been prepared and certain of these elaborated, through substrate-controlled enolate alkylation reactions, to analogues of the natural product. Preliminary biological evaluation of these analogues revealed that they are only weakly active anti-infective agents.


References

[1]  For a very useful introduction to this topic, set in an historical context, see: K. C. Nicolaou, S. Rigol, J. Antibiot 2018, 71, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For recent reviews see: R. Shang, J. Liang, Y. Yi, J. Wang, Molecules 2015, 20, 16127.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. D. Rudolf, L.-B. Dong, B. Shen, Biochem. Pharmacol. 2017, 133, 139.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) See, for example, E. Martens, A. L. Demain, J. Antibiot 2011, 64, 705.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L.-B. Dong, J. D. Rudolf, B. Shen, Org. Lett. 2016, 18, 4606.and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Palanichamy, K. P. Kaliappan, Chem. Asian J. 2010, 5, 668.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. A. B. Austin, M. G. Banwell, A. C. Willis, Org. Lett. 2008, 10, 4465.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. C. Nicolaou, G. S. Trai, D. J. Edmonds, Angew. Chem. Int. Ed. 2008, 47, 1780.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  For a summary of the ways in which such cis-1,2-dihydrocatechols are produced and have been exploited in our group, see: E. S. Taher, M. G. Banwell, J. N. Buckler, Q. Yan, P. Lan, Chem. Rec. 2018, 18, 239.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E.-L. Chang, B. D. Schwartz, A. G. Draffan, M. G. Banwell, A. C. Willis, Chem. Asian J. 2015, 10, 427.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  R. N. Muhammad, A. G. Draffan, M. G. Banwell, A. C. Willis, Synlett 2016, 27, 61.

[10]  (a) Both the R- and the S-enantiomeric forms of compound 17 have been reported: G. Sabitha, G. Chandrashekhar, J. S. Yadav, K. Rachineni, B. Jagadeesh, RSC Adv. 2012, 2, 10157.
      (b) T. Mahapatra, T. Das, S. Nanda, Bull. Chem. Soc. Jpn. 2011, 84, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J.-L. Luche, J. Am. Chem. Soc. 1978, 100, 2226.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  R. E. Ireland, L. Liu, J. Org. Chem. 1993, 58, 2899.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  For recent applications of this process, see: X. Ma, N. Anderson, L. V. White, S. Bae, W. Raverty, A. C. Willis, M. G. Banwell, Aust. J. Chem. 2015, 68, 593.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. C. Nicolaou, D. L. F. Gray, T. Montagnon, S. T. Harrison, Angew. Chem. Int. Ed. 2002, 41, 996.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Z. Ma, J. M. Bobbitt, J. Org. Chem. 1991, 56, 6110.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  T. Inokuchi, H. Kawafuchi, S. Torii, Chem. Lett. 1992, 1895.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  G. Y. C. Leung, H. Li, Q.-Y. Toh, A. M.-Y. Ng, R. J. Sum, J. E. Bandow, D. Y.-K. Chen, Eur. J. Org. Chem. 2011, 183.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. A. Carpino, A. El-Faham, C. A. Minor, F. Albericio, J. Chem. Soc. Chem. Commun. 1994, 2, 201.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  W. J. Middleton, Org. Synth. 1986, 64, 221.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  See page 1276 in: L. F. Fieser, M. Fieser, Reagents for Organic Synthesis 1967 (John Wiley and Sons: New York, NY).

[25]  CrysAlis PRO Version 1.171.37.35h (release 09-02-2015 CrysAlis171.NET) (compiled 9 February 2015, 16:26:32) (Agilent Technologies: Oxfordshire, UK).

[26]  A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.

[27]  P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
         | Crossref | GoogleScholarGoogle Scholar |