Chemoenzymatic Syntheses of Some Analogues of the Tricarbocyclic Core of the Anti-Bacterial Agent Platencin and the Biological Evaluation of Certain of their N-Arylpropionamide Derivatives*
Rehmani N. Muhammad A , Ee Ling Chang A , Alistair G. Draffan B , Anthony C. Willis A , Paul D. Carr A and Martin G. Banwell A CA Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.
B Biota Scientific Management Pty Ltd, Melbourne, Vic. 3168, Australia.
C Corresponding author. Email: Martin.Banwell@anu.edu.au
Australian Journal of Chemistry 71(9) 655-672 https://doi.org/10.1071/CH18145
Submitted: 6 April 2018 Accepted: 18 May 2018 Published: 6 July 2018
Abstract
A range of structural variations on the tricarbocyclic core 2 of the anti-bacterial agent platencin 1, including those represented by compounds 14, 15, and 27, have been prepared and certain of these elaborated, through substrate-controlled enolate alkylation reactions, to analogues of the natural product. Preliminary biological evaluation of these analogues revealed that they are only weakly active anti-infective agents.
References
[1] For a very useful introduction to this topic, set in an historical context, see: K. C. Nicolaou, S. Rigol, J. Antibiot 2018, 71, 153.| Crossref | GoogleScholarGoogle Scholar |
[2] (a) For recent reviews see: R. Shang, J. Liang, Y. Yi, J. Wang, Molecules 2015, 20, 16127.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. D. Rudolf, L.-B. Dong, B. Shen, Biochem. Pharmacol. 2017, 133, 139.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) See, for example, E. Martens, A. L. Demain, J. Antibiot 2011, 64, 705.
| Crossref | GoogleScholarGoogle Scholar |
(b) L.-B. Dong, J. D. Rudolf, B. Shen, Org. Lett. 2016, 18, 4606.and references cited therein.
| Crossref | GoogleScholarGoogle Scholar |
[4] K. Palanichamy, K. P. Kaliappan, Chem. Asian J. 2010, 5, 668.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. A. B. Austin, M. G. Banwell, A. C. Willis, Org. Lett. 2008, 10, 4465.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. C. Nicolaou, G. S. Trai, D. J. Edmonds, Angew. Chem. Int. Ed. 2008, 47, 1780.
| Crossref | GoogleScholarGoogle Scholar |
[7] For a summary of the ways in which such cis-1,2-dihydrocatechols are produced and have been exploited in our group, see: E. S. Taher, M. G. Banwell, J. N. Buckler, Q. Yan, P. Lan, Chem. Rec. 2018, 18, 239.
| Crossref | GoogleScholarGoogle Scholar |
[8] E.-L. Chang, B. D. Schwartz, A. G. Draffan, M. G. Banwell, A. C. Willis, Chem. Asian J. 2015, 10, 427.
| Crossref | GoogleScholarGoogle Scholar |
[9] R. N. Muhammad, A. G. Draffan, M. G. Banwell, A. C. Willis, Synlett 2016, 27, 61.
[10] (a) Both the R- and the S-enantiomeric forms of compound 17 have been reported: G. Sabitha, G. Chandrashekhar, J. S. Yadav, K. Rachineni, B. Jagadeesh, RSC Adv. 2012, 2, 10157.
(b) T. Mahapatra, T. Das, S. Nanda, Bull. Chem. Soc. Jpn. 2011, 84, 511.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353.
| Crossref | GoogleScholarGoogle Scholar |
[12] J.-L. Luche, J. Am. Chem. Soc. 1978, 100, 2226.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53.
| Crossref | GoogleScholarGoogle Scholar |
[14] R. E. Ireland, L. Liu, J. Org. Chem. 1993, 58, 2899.
| Crossref | GoogleScholarGoogle Scholar |
[15] For recent applications of this process, see: X. Ma, N. Anderson, L. V. White, S. Bae, W. Raverty, A. C. Willis, M. G. Banwell, Aust. J. Chem. 2015, 68, 593.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. C. Nicolaou, D. L. F. Gray, T. Montagnon, S. T. Harrison, Angew. Chem. Int. Ed. 2002, 41, 996.
| Crossref | GoogleScholarGoogle Scholar |
[17] Z. Ma, J. M. Bobbitt, J. Org. Chem. 1991, 56, 6110.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Inokuchi, H. Kawafuchi, S. Torii, Chem. Lett. 1992, 1895.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. Y. C. Leung, H. Li, Q.-Y. Toh, A. M.-Y. Ng, R. J. Sum, J. E. Bandow, D. Y.-K. Chen, Eur. J. Org. Chem. 2011, 183.
| Crossref | GoogleScholarGoogle Scholar |
[20] L. A. Carpino, A. El-Faham, C. A. Minor, F. Albericio, J. Chem. Soc. Chem. Commun. 1994, 2, 201.
| Crossref | GoogleScholarGoogle Scholar |
[21] W. J. Middleton, Org. Synth. 1986, 64, 221.
| Crossref | GoogleScholarGoogle Scholar |
[22] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar |
[24] See page 1276 in: L. F. Fieser, M. Fieser, Reagents for Organic Synthesis 1967 (John Wiley and Sons: New York, NY).
[25] CrysAlis PRO Version 1.171.37.35h (release 09-02-2015 CrysAlis171.NET) (compiled 9 February 2015, 16:26:32) (Agilent Technologies: Oxfordshire, UK).
[26] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.
[27] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
| Crossref | GoogleScholarGoogle Scholar |