Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

One-Step Synthesis of CdSe Quantum Dots by Using Hydrazine Hydrate Reduction of Selenium Dioxide

Rongfang Wang A B , Xingming Wei A , Jun Xie A , Bomei Wang A and Xiaotong He A
+ Author Affiliations
- Author Affiliations

A Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China.

B Corresponding author. Email: fangfang393@163.com

Australian Journal of Chemistry 71(7) 524-526 https://doi.org/10.1071/CH18100
Submitted: 4 March 2018  Accepted: 3 June 2018   Published: 10 July 2018

Abstract

Hydrazine hydrate was used as a novel reducing agent for the synthesis of water soluble and stable cadmium selenide (CdSe) quantum dots (QDs). The as-prepared CdSe quantum dots were investigated by X-ray powder diffraction, high-resolution transmission electron microscopy, photoluminescence, and UV-vis absorption spectroscopy analyses. The results show that the as-prepared CdSe QDs possess a cubic crystal structure and an average size of 2 nm. The effects of the pH of the original solution, thioglycollic acid (TGA)/Cd2+ molar ratio (nTGA/nCd2+), and the Cd/Se molar ratio on the luminescence properties of CdSe QDs were also systematically analysed.


References

[1]  E. S. Speranskaya, N. V. Beloglazova, P. Lenain, S. D. Saeger, Z. Wang, S. Zhang, Z. Hens, D. Knopp, R. Niessner, D. V. Potapkin, I. Y. Goryacheva, Biosens. Bioelectron. 2014, 53, 225.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Bera, S. B. Singh, S. K. Ray, J. Solid State Chem. 2012, 189, 75.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee, D. Y. Jeon, Adv. Mater. 2008, 20, 2696.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  X. Xu, Y. Wang, T. Gule, Q. Luo, L. Zhou, F. Gong, Mater. Res. Bull. 2013, 48, 983.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y. L. Lee, B. M. Huang, H. T. Chien, Chem. Mater. 2008, 20, 6903.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. Qu, X. Peng, J. Am. Chem. Soc. 2002, 124, 2049.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Y. S. Xia, C. Q. Zhu, Mater. Lett. 2008, 62, 2103.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  R. M. Hodlur, M. K. Rabinal, Chem. Eng. J. 2014, 244, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Wei, J. Li, F. Gao, S. Guo, Y. Zhou, D. Zhao, J. Spectrosc. 2015, 2015, 1.

[10]  R. Wang, X. Xu, Y. Wang, L. Zhou, B. Li, IEEE Photonics Technol. Lett. 2014, 26, 1196.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  F. H. Huang, G. Chen, Spectrochim. Acta A 2008, 70, 318.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  W. W. Yu, L. H. Qu, W. Z. Guo, X. G. Peng, Chem. Mater. 2003, 15, 2854.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Guo, W. Yang, C. Wang, J. Phys. Chem. B 2005, 109, 17467.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. J. Liu, Z. X. Shi, Y. C. Yu, R. Q. Yang, S. L. Zuo, J. Colloid Interface Sci. 2010, 342, 278.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. V. Williams, C. N. Adams, N. A. Kotov, P. E. Savage, Ind. Eng. Chem. Res. 2007, 46, 4358.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. Wang, X. Gao, Q. Ma, X. G. Su, J. Mater. Chem. 2009, 19, 7016.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. Y. Zhou, L. Y. Zhou, J. H. Xu, Y. F. Gan, J. Solid State Electrochem. 2016, 20, 533.
         | Crossref | GoogleScholarGoogle Scholar |