One-Step Synthesis of CdSe Quantum Dots by Using Hydrazine Hydrate Reduction of Selenium Dioxide
Rongfang Wang A B , Xingming Wei A , Jun Xie A , Bomei Wang A and Xiaotong He AA Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China.
B Corresponding author. Email: fangfang393@163.com
Australian Journal of Chemistry 71(7) 524-526 https://doi.org/10.1071/CH18100
Submitted: 4 March 2018 Accepted: 3 June 2018 Published: 10 July 2018
Abstract
Hydrazine hydrate was used as a novel reducing agent for the synthesis of water soluble and stable cadmium selenide (CdSe) quantum dots (QDs). The as-prepared CdSe quantum dots were investigated by X-ray powder diffraction, high-resolution transmission electron microscopy, photoluminescence, and UV-vis absorption spectroscopy analyses. The results show that the as-prepared CdSe QDs possess a cubic crystal structure and an average size of 2 nm. The effects of the pH of the original solution, thioglycollic acid (TGA)/Cd2+ molar ratio (nTGA/nCd2+), and the Cd/Se molar ratio on the luminescence properties of CdSe QDs were also systematically analysed.
References
[1] E. S. Speranskaya, N. V. Beloglazova, P. Lenain, S. D. Saeger, Z. Wang, S. Zhang, Z. Hens, D. Knopp, R. Niessner, D. V. Potapkin, I. Y. Goryacheva, Biosens. Bioelectron. 2014, 53, 225.| Crossref | GoogleScholarGoogle Scholar |
[2] S. Bera, S. B. Singh, S. K. Ray, J. Solid State Chem. 2012, 189, 75.
| Crossref | GoogleScholarGoogle Scholar |
[3] H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee, D. Y. Jeon, Adv. Mater. 2008, 20, 2696.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. Xu, Y. Wang, T. Gule, Q. Luo, L. Zhou, F. Gong, Mater. Res. Bull. 2013, 48, 983.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y. L. Lee, B. M. Huang, H. T. Chien, Chem. Mater. 2008, 20, 6903.
| Crossref | GoogleScholarGoogle Scholar |
[6] L. Qu, X. Peng, J. Am. Chem. Soc. 2002, 124, 2049.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. S. Xia, C. Q. Zhu, Mater. Lett. 2008, 62, 2103.
| Crossref | GoogleScholarGoogle Scholar |
[8] R. M. Hodlur, M. K. Rabinal, Chem. Eng. J. 2014, 244, 82.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Wei, J. Li, F. Gao, S. Guo, Y. Zhou, D. Zhao, J. Spectrosc. 2015, 2015, 1.
[10] R. Wang, X. Xu, Y. Wang, L. Zhou, B. Li, IEEE Photonics Technol. Lett. 2014, 26, 1196.
| Crossref | GoogleScholarGoogle Scholar |
[11] F. H. Huang, G. Chen, Spectrochim. Acta A 2008, 70, 318.
| Crossref | GoogleScholarGoogle Scholar |
[12] W. W. Yu, L. H. Qu, W. Z. Guo, X. G. Peng, Chem. Mater. 2003, 15, 2854.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Guo, W. Yang, C. Wang, J. Phys. Chem. B 2005, 109, 17467.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. J. Liu, Z. X. Shi, Y. C. Yu, R. Q. Yang, S. L. Zuo, J. Colloid Interface Sci. 2010, 342, 278.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. V. Williams, C. N. Adams, N. A. Kotov, P. E. Savage, Ind. Eng. Chem. Res. 2007, 46, 4358.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. Wang, X. Gao, Q. Ma, X. G. Su, J. Mater. Chem. 2009, 19, 7016.
| Crossref | GoogleScholarGoogle Scholar |
[17] C. Y. Zhou, L. Y. Zhou, J. H. Xu, Y. F. Gan, J. Solid State Electrochem. 2016, 20, 533.
| Crossref | GoogleScholarGoogle Scholar |