Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Bromination of Acridine*

Graham S. Chandler A C and Wolfgang H. F. Sasse B
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia.

B Deceased. Formerly of CSIRO Molecular Science, Bag 10, Clayton South, Vic. 3169, Australia.

C Corresponding author. Email: graham.chandler@uwa.edu.au

Australian Journal of Chemistry 71(4) 285-288 https://doi.org/10.1071/CH17619
Submitted: 30 November 2017  Accepted: 21 January 2018   Published: 15 February 2018

Abstract

The quantitative determination of the products of bromination of acridine in concentrated sulfuric acid and glacial acetic acid is described. In both cases, the only monobromo products were the 2- and 4-substituted compounds. With sulfuric acid, the 4-isomer predominates whereas in acetic acid, the 2-isomer is predominant. This work expands substantially on the tiny amount of previous work on halogenation of dibenzo-annelated pyridines.


References

[1]  P. B. D. de la Mare, J. H. Ridd, Aromatic Substitution 1959 (Butterworths: London).

[2]  P. B. D. de la Mare, Electrophilic Halogenations 1976 (Cambridge University Press: Cambridge, UK).

[3]  J. Ridd, in Physical Methods in Heterocyclic Chemistry (Ed. A. Katritzky) 1963, pp. 109–160 (Academic Press: New York, NY).

[4]  A. Senier, P. C. Austin, J. Chem. Soc. 1904, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XmsVCqtg%3D%3D&md5=3a1aca91373a71d0e90b1c8590dcb354CAS |

[5]  R. N. Acheson, T. C. Holt, K. A. Barnard, J. Chem. Soc. 1954, 4142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXntlGltQ%3D%3D&md5=1af0597a16e907a3aa218d7301128e06CAS |

[6]  G. S. Chandler, R. A. Jones, W. H. Sasse, Aust. J. Chem. 1965, 18, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXjs1Onsg%3D%3D&md5=16f6d1ac959d42227d1e253394148ab8CAS |

[7]  H. Schmid, W. E. Leutenegger, Helv. Chim. Acta 1947, 30, 1965.
         | 1:CAS:528:DyaH1cXhslCgsg%3D%3D&md5=55aaabdbb22aca91e23d8d0278cd2181CAS |

[8]  D. N. Derbyshire, W. A. Waters, J. Chem. Soc. 1950, 573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXlsFGlsQ%3D%3D&md5=77508a7e2a66449d8594398586f034e3CAS |

[9]  P. B. D. de la Mare, N. Kiamud-din, J. N. Ridd, J. Chem. Soc. 1960, 561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXotVKhtg%3D%3D&md5=01e65e929d7fd878358e15b07ed3f188CAS |

[10]  R. P. Bell, E. Celles, J. Chem. Soc. 1951, 2734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XhtlKnuw%3D%3D&md5=e17ed598200b6594cf8585a5462e3607CAS |

[11]  J. Arotsky, M. C. R. Symons, Quart. Rev. 1962, 2582.
         | 1:CAS:528:DyaF38Xktlenu7o%3D&md5=eed131452a21e376df3ad0634eb5808eCAS |

[12]  J. Arotsky, H. C. Misra, M. C. R. Symons, J. Chem. Soc. 1962, 2582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xktlenu7o%3D&md5=eed131452a21e376df3ad0634eb5808eCAS |

[13]  A. M. Andrievsky, M. V. Gorelik, Russ. Chem. Rev. 2011, 80, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslymtL0%3D&md5=a54cb136741283f2767695f6c06c7b2dCAS |

[14]  J. S. Matthews, V. A. L. Pereda, P. Aguilera, J. Chromatogr. A 1962, 9, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXotlOmug%3D%3D&md5=93c609aff1465834f97ab56878b84798CAS |

[15]  K. Gergana, B. Galabov, J. I. Wu, H. F. Schaefer, P. von R. Schleyer, J. Am. Chem. Soc. 2009, 131, 14722.

[16]  A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFSisLY%3D&md5=3438ddadf6d0ceffc2fb850231252880CAS |

[17]  F. Weinhold, C. Landis, Valency and Bonding 2005 (Cambridge University Press: Cambridge, UK).

[18]  R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xnt1Kq&md5=59a873edd93a5f3c1beb4365d9597114CAS |

[19]  B. Pullman, Bull. Soc. Chim. Fr. 1948, 533.
         | 1:CAS:528:DyaH1cXjtFWgtw%3D%3D&md5=8eb7d176a193f0ecdeabe7f007f5f470CAS |

[20]  H. C. Longuet-Higgins, C. A. Coulson, J. Chem. Soc. 1949, 971.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. J. S. Dewar, P. M. Maitlis, J. Chem. Soc. 1957, 2521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXptVOluw%3D%3D&md5=eca5a95b8cdd2f23b646e06e3d276167CAS |

[22]  K. Fukui, T. Yonizawa, C. Nagata, H. Shingu, J. Chem. Phys. 1954, 22, 1433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXns1SitA%3D%3D&md5=690582cd7b35a963410c338cc5e9f491CAS |

[23]  B. Galabov, D. Nalbantova, P. von R. Schleyer, H. F. Schaefer, Acc. Chem. Res. 2016, 49, 1191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptFyks7s%3D&md5=904472a527f8729bffb0a55827496415CAS |

[24]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=209e9cc4a137287cdf7908911350261bCAS |

[25]  A. D. Becke, J. Chem. Phys. 1996, 104, 1040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Olsw%3D%3D&md5=9d4c6e34df67a6445053c07233d18d72CAS |

[26]  C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=ce4cdcd8c04eed00f9f8f800578a5d15CAS |

[27]  L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Binning, L. Radom, J. Chem. Phys. 1995, 103, 6104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFGhs78%3D&md5=55e79d9b504b433072757b0f281ca234CAS |

[28]  T. Clark, J. Chandrasekar, G. W. Spitznagel, P. von R. Schleyer, J. Comput. Chem. 1983, 4, 294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlt1ymsb8%3D&md5=435a38dbcd6a2077ad020c6b841a2a54CAS |

[29]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision-D.01 2013 (Gaussian, Inc.: Wallingford, CT).

[30]  E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0 2013 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).