Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Facile Synthesis of Pentamethylcyclopentadienyl Ruthenium Half-Sandwich Complexes by Naphthalene Displacement*

Jeremy Stone A , David Jago A , Alexandre Sobolev B , Mark Spackman A and George Koutsantonis A C
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

B Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

C Corresponding author. Email: george.koutsantonis@uwa.edu.au

Australian Journal of Chemistry 71(4) 289-294 https://doi.org/10.1071/CH18024
Submitted: 17 January 2018  Accepted: 15 March 2018   Published: 27 March 2018

Abstract

Ruthenium half-sandwich complexes are central in a wide range of diverse applications in the field of organometallic chemistry. As such, exploration of their preparation and reactivity is crucial for development of their chemistry. Herein, we present alternative synthetic methods for the preparation of Cp*Ru(dppm)Cl, Cp*Ru(dppe)Cl, Cp*Ru(dppf)Cl, [Cp*Ru(COD)(MeCN)]BF4, and [Cp*Ru(bpy)(MeCN)]BF4 (dppm = 1,2-bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino) ethane; dppf = 1,2-bis(diphenylphosphino)ferrocene; COD = 1,5-cyclooctadiene; bpy= 2,2′-bipyridine), starting from the easily accessible [Cp*Ru(η6-C10H8)]BF4. The single-crystal X-ray structure determinations for [Cp*Ru(COD)(MeCN)]BF4, and [Cp*Ru(bpy)(MeCN)]BF4 are also presented.


References

[1]  B. M. Trost, M. U. Frederiksen, M. T. Rudd, Angew. Chem. Int. Ed. 2005, 44, 6630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SnsLbM&md5=392d79cfddcf9e77db2b56f94c41c84aCAS |

[2]  C. G. Hartinger, P. J. Dyson, Chem. Soc. Rev. 2009, 38, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntLs%3D&md5=d326812a49e6e6e4d0acf8f83b76fff6CAS |

[3]  G. Suss-Fink, Dalton Trans. 2010, 1673.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  E. Meggers, Curr. Opin. Chem. Biol. 2007, 11, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOnsr8%3D&md5=ecef101a11f0ca49283c31407317fee1CAS |

[5]  K. J. Kilpin, P. J. Dyson, Chem. Sci. 2013, 4, 1410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7c%3D&md5=5481da8782ae4fb6b278c875f2a727a5CAS |

[6]  V. Guerchais, Eur. J. Inorg. Chem. 2002, 783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVers7k%3D&md5=9fc6e393c50d8d9a22294e3226a69c48CAS |

[7]  M. I. Bruce, C. Hameister, A. G. Swincer, R. C. Wallis, S. D. Ittel, in Inorganic Syntheses (Ed. J. P. Fackler) 1982, Vol. 21, pp. 270–272 (John Wiley & Sons, Inc.: Hoboken, NJ).

[8]  N. J. Long, C. K. Williams, Angew. Chem. Int. Ed. 2003, 42, 2586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFeksbk%3D&md5=7cfc713f64d38dfe70daece9ca2669f7CAS |

[9]  R. B. King, M. B. Bisnette, J. Organomet. Chem. 1967, 8, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktFWmtbw%3D&md5=c28f8b1e1bc2cfac5719ce698a7a4036CAS |

[10]  R. B. King, Coord. Chem. Rev. 1976, 20, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlOlsA%3D%3D&md5=60566fdc95d9c04d78ff70893f9a8124CAS |

[11]  L. deVries, J. Org. Chem. 1960, 25, 1838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtlSqtQ%3D%3D&md5=d8290d9c8572b4b05c1c3459cf7fa0acCAS |

[12]  R. S. Threlkel, J. E. Bercaw, P. F. Seidler, J. M. Stryker, R. G. Bergman, Org. Synth. 1987, 65, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFaitLo%3D&md5=12b865f4d395f2844916b9280d5ab97bCAS |

[13]  J. M. Manriquez, P. J. Fagan, L. D. Schertz, T. J. Marks, J. Bercaw, N. McGrady, in Inorganic Syntheses (Ed. J. P. Fackler) 1982, Vol. 21, pp. 181–185 (John Wiley & Sons, Inc.: Hoboken, NJ).

[14]  J. B. G. Gluyas, N. J. Brown, J. D. Farmer, P. J. Low, Aust. J. Chem. 2017, 70, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmslSjtQ%3D%3D&md5=480ffb4e322f8ae2b857ea485b527131CAS |

[15]  T. D. Tilley, R. H. Grubbs, J. E. Bercaw, Organometallics 1984, 3, 274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmvVCqsg%3D%3D&md5=718cd5aa6c739661f43914d27aaab055CAS |

[16]  J. L. Schrenk, A. M. McNair, F. B. McCormick, K. R. Mann, Inorg. Chem. 1986, 25, 3501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlCju7Y%3D&md5=51004cb64aeea9f7be734ae0e3646496CAS |

[17]  B. T. Loughrey, B. V. Cunning, P. C. Healy, C. L. Brown, P. G. Parsons, M. L. Williams, Chem. Asian J. 2012, 7, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyktLzM&md5=c5a3384cb7e89480f9a9655682d745a5CAS |

[18]  A. R. Kudinov, M. I. Rybinskaya, Y. T. Struchkov, A. I. Yanovskii, P. V. Petrovskii, J. Organomet. Chem. 1987, 336, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFWiu74%3D&md5=6da4fa3f9d0290b493f523e086d70598CAS |

[19]  D. S. Perekalin, E. E. Karslyan, A. O. Borissova, A. R. Kudinov, Mendeleev Commun. 2011, 21, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFGltr4%3D&md5=fc48e19a39d8415197aa666a23a1d0cdCAS |

[20]  D. S. Perekalin, E. E. Karslyan, E. A. Trifonova, A. I. Konovalov, N. L. Loskutova, Y. V. Nelyubina, A. R. Kudinov, Eur. J. Inorg. Chem. 2013, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOrsrvL&md5=957566afa49ba15788e031a6c1544a7cCAS |

[21]  F. Morandini, A. Dondana, I. Munari, G. Pilloni, G. Consiglio, A. Sironi, M. Moret, Inorg. Chim. Acta 1998, 282, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1Wjs7g%3D&md5=0825015ffe4bec5e6d80128e39f7d9cbCAS |

[22]  A. Scherer, T. Mukherjee, F. Hampel, J. A. Gladysz, Organometallics 2014, 33, 6709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGmsb7J&md5=b4b00dfd40720c3b8f0aa3cd6338edfaCAS |

[23]  M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, A. H. White, Organometallics 2003, 22, 3184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFCiu70%3D&md5=f7de270b7b4a69532bac741a5a842f9dCAS |

[24]  M. Sato, M. Asai, J. Organomet. Chem. 1996, 508, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XptVSltw%3D%3D&md5=50828599d19d4d1898571d87eb16f2edCAS |

[25]  N. Oshima, H. Suzuki, Y. Moro-Oka, Chem. Lett. 1984, 13, 1161.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 8923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Wjtr8%3D&md5=410d5b3b17e29530a91077865b932665CAS |

[27]  S. A. Serron, L. Luo, C. Li, M. E. Cucullu, E. D. Stevens, S. P. Nolan, Organometallics 1995, 14, 5290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGgsr4%3D&md5=51c97fd390c4994033062a107d2bb280CAS |

[28]  P. H. Dixneuf, C. Bruneau, S. Derien, Pure Appl. Chem. 1998, 70, 1065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFOjtLY%3D&md5=12da2c69aad28920bf58aa5b227dc41cCAS |

[29]  T.-a. Mitsudo, H. Naruse, T. Kondo, Y. Ozaki, Y. Watanabe, Angew. Chem. Int. Ed. Engl. 1994, 33, 580.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  U. Koelle, J. Kossakowski, J. Organomet. Chem. 1989, 362, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFCltbw%3D&md5=71c9fa3b901ec0835ef50420c13c72bbCAS |

[31]  P. J. Fagan, W. S. Mahoney, J. C. Calabrese, I. D. Williams, Organometallics 1990, 9, 1843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVKmtbo%3D&md5=28356e8186331c73dfbf0c2c63e7cb15CAS |

[32]  M. D. Mbaye, B. Demerseman, J.-L. Renaud, C. Bruneau, J. Organomet. Chem. 2005, 690, 2149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlWrtro%3D&md5=cb77e8bd35c8951226be1ad64f885e78CAS |

[33]  J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 6054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlels7s%3D&md5=1de0d12a69dfbccf023ca4a4d3aa15fdCAS |

[34]  T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlClur0%3D&md5=dde10f2a4c116e68c80d36bebee32e6cCAS |

[35]  T. Ishiyama, J. Takagi, J. F. Hartwig, N. Miyaura, Angew. Chem. Int. Ed. 2002, 41, 3056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslSrtb8%3D&md5=a5a61b9c7b337c24016f6d9bfa5afc55CAS |

[36]  G. Albertin, S. Antoniutti, M. Bortoluzzi, J. Castro, M. Trevisan, J. Organomet. Chem. 2017, 848, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXht1GkurjP&md5=7c5c089f71646b641cd28f74d35193eaCAS |

[37]  M. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, Angew. Chem. Int. Ed. 2003, 42, 5066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOmsL0%3D&md5=15d4511a6743a1eb19b74132a37601e7CAS |

[38]  L. Hintermann, L. Xiao, A. Labonne, U. Englert, Organometallics 2009, 28, 5739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2murzF&md5=5c718e58d069cabaff5f405e1de05008CAS |

[39]  M. E. Thibault, D. V. DiMondo, M. Jennings, P. V. Abdelnur, M. N. Eberlin, M. Schlaf, Green Chem. 2011, 13, 357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gjt78%3D&md5=0ef6b9e571db24b6d0b37fdea07b2f52CAS |

[40]  D. S. Perekalin, N. V. Shvydkiy, Y. V. Nelyubina, A. R. Kudinov, Mendeleev Commun. 2015, 25, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1akt70%3D&md5=28936104b3cc862b54e3c54478ee83dcCAS |

[41]  E. P. Kündig, F. R. Monnier, Adv. Synth. Catal. 2004, 346, 901.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  B. M. Trost, C. M. Older, Organometallics 2002, 21, 2544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Sgurc%3D&md5=e130e6d10a8d03e3f8506cf7ed4e2517CAS |

[43]  T. P. Gill, K. R. Mann, Organometallics 1982, 1, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVCnur8%3D&md5=73294a8fc20656bbfefa9b182cc128daCAS |

[44]  B. Steinmetz, W. A. Schenk, Organometallics 1999, 18, 943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Snug%3D%3D&md5=83a2dda90e14cd623f2bd1f6607f8caeCAS |

[45]  A. M. McNair, K. R. Mann, Inorg. Chem. 1986, 25, 2519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVejur4%3D&md5=ab26b1852f6a7173232aa095eb3e5c57CAS |

[46]  W. L. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals 2013 (Butterworth-Heinemann: Oxford).

[47]  G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |