Mechanistic Insights into Water-Catalyzed Formation of Levoglucosenone from Anhydrosugar Intermediates by Means of High-Level Theoretical Procedures
Wenchao Wan A , Li-Juan Yu A and Amir Karton A BA School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia.
B Corresponding author. Email: amir.karton@uwa.edu.au
Australian Journal of Chemistry 69(9) 943-949 https://doi.org/10.1071/CH16206
Submitted: 30 March 2016 Accepted: 21 April 2016 Published: 24 May 2016
Abstract
Levoglucosenone (LGO) is an important anhydrosugar product of fast pyrolysis of cellulose and biomass. We use the high-level G4(MP2) thermochemical protocol to study the reaction mechanism for the formation of LGO from the 1,4:3,6-dianhydro-α-d-glucopyranose (DGP) pyrolysis intermediate. We find that the DGP-to-LGO conversion proceeds via a multistep reaction mechanism, which involves ring-opening, ring-closing, enol-to-keto tautomerization, hydration, and dehydration reactions. The rate-determining step for the uncatalyzed process is the enol-to-keto tautomerization (ΔG‡298 = 68.6 kcal mol–1). We find that a water molecule can catalyze five of the seven steps in the reaction pathway. In the water-catalyzed process, the barrier for the enol-to-keto tautomerization is reduced by as much as 15.1 kcal mol–1, and the hydration step becomes the rate-determining step with an activation energy of ΔG‡298 = 58.1 kcal mol–1.
References
[1] W. de Jong, in Biomass as a Sustainable Energy Source for the Future (Ed. W. de Jong, V. O. J. Ruud) 2014, Ch. 15, pp. 469–502 (John Wiley & Sons, Inc.: Hoboken, NJ).[2] M. Parikka, Biomass Bioenergy 2004, 27, 613.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. V. Bridgwater, G. V. C. Peacocke, Renewable Sustainable Energy Rev. 2000, 4, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpt1CjsA%3D%3D&md5=69497b499dd14f6cb7c37f250220a664CAS |
[4] J. P. Diebold, A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils 2000 (National Renewable Energy Laboratory: Lakewood, CO).
[5] O. D. Mante, F. A. Agblevor, Waste Manage. 2012, 32, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVarsb7E&md5=6bf7818e2dbd5833d47e569dcf16818aCAS |
[6] A. Oasmaa, E. Kuoppala, Y. Solantausta, Energy Fuels 2003, 17, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWitr0%3D&md5=c3e456e6ecb6b4d7b5588adeccdbbc53CAS |
[7] F. Shafizadeh, R. H. Furneaux, T. T. Stevenson, Carbohydr. Res. 1979, 71, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvFWrtrY%3D&md5=c0a55f91bf75210c8cc7c4d4f3e6cdcfCAS |
[8] P. Bhaté, D. Horton, Carbohydr. Res. 1983, 122, 189.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Matsumoto, T. Ebata, H. Matsushita, Carbohydr. Res. 1995, 279, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsV2ksw%3D%3D&md5=3fcc5137810335d84323a6bfd76f73eaCAS |
[10] Z. J. Witczak, R. Chhabra, H. Chen, X.-Q. Xie, Carbohydr. Res. 1997, 301, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFajtr8%3D&md5=f811a1e3a439400613b13438ecc186faCAS |
[11] Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, G. W. Huber, J. Phys. Chem. C 2009, 113, 20097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSiu7rL&md5=73acec79d672ab51838e0ddd9c86b0f2CAS |
[12] G. Dobele, T. Dizhbite, G. Rossinskaja, G. Telysheva, D. Meier, S. Radtke, O. Faix, J. Anal. Appl. Pyrolysis 2003, 68–69, 197.
| Crossref | GoogleScholarGoogle Scholar |
[13] G. Dobele, G. Rossinskaja, T. Dizhbite, G. Telysheva, D. Meier, O. Faix, J. Anal. Appl. Pyrolysis 2005, 74, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFGlsr4%3D&md5=9ac7c691549957185d8cad95384d5f9fCAS |
[14] Z.-B. Zhang, Q. Lu, X.-N. Ye, T.-P. Wang, X.-H. Wang, C.-Q. Dong, BioEnergy Res. 2015, 8, 1263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitl2ltrw%3D&md5=6725ea4d0a45a80bf35eb01bd26e0cc4CAS |
[15] X.-W. Sui, Z. Wang, B. Liao, Y. Zhang, Q.-X. Guo, Bioresour. Technol. 2012, 103, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSqt7vO&md5=2254a4d159bf89560d67a213028d52d7CAS | 22047659PubMed |
[16] S. Kudo, Z. Zhou, K. Norinaga, J.-I. Hayashi, Green Chem. 2011, 13, 3306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSitLzL&md5=65368905a56703aed0c2b96274f44b0aCAS |
[17] Z. Wang, Q. Lu, X.-F. Zhu, Y. Zhang, ChemSusChem 2011, 4, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFWntA%3D%3D&md5=1c07beaef05e5b0cd9fa5146117772aaCAS | 21226215PubMed |
[18] Y. Halpern, R. Riffer, A. Broido, J. Org. Chem. 1973, 38, 204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXosVKlug%3D%3D&md5=f1fb289cd8e60234bb8c5fe5d271827dCAS |
[19] R. S. Assary, L. A. Curtiss, ChemCatChem 2012, 4, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOrurw%3D&md5=8a7d8a8adac66d7904586c2558e3ad03CAS |
[20] Q. Lu, Y. Zhang, C.-q. Dong, Y.-P. Yang, H.-Z. Yu, J. Anal. Appl. Pyrolysis 2014, 110, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWqs73E&md5=736bb18cb94f09bf0a846fd90af9d16fCAS |
[21] P. R. Patwardhan, J. A. Satrio, R. C. Brown, B. H. Shanks, J. Anal. Appl. Pyrolysis 2009, 86, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlylsLnM&md5=b991ad67ecd1efdd68304e62751eb69aCAS |
[22] Q. Lu, X.-C. Yang, C.-Q. Dong, Z.-F. Zhang, X.-M. Zhang, X.-F. Zhu, J. Anal. Appl. Pyrolysis 2011, 92, 430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqt77I&md5=2d94a4177eb811c331b06b965b3b0206CAS |
[23] M. S. Mettler, A. D. Paulsen, D. G. Vlachos, P. J. Dauenhauer, Green Chem. 2012, 14, 1284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1yhur8%3D&md5=9b045e00e2d5565336a3a50f17833931CAS |
[24] J. C. Degenstein, P. Murria, M. Easton, H. Sheng, M. Hurt, A. R. Dow, J. Gao, J. J. Nash, R. Agrawal, W. N. Delgass, F. H. Ribeiro, H. I. Kenttämaa, J. Org. Chem. 2015, 80, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivFahtw%3D%3D&md5=9b7dd456ede566f1ed5c8e49dcc5c127CAS | 25562626PubMed |
[25] A. M. Sarotti, Carbohydr. Res. 2014, 390, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWnsb0%3D&md5=5bef2e556931a0f770180062719ecfd7CAS | 24747557PubMed |
[26] F. Shafizadeh, R. H. Furneaux, T. T. Stevenson, T. G. Cochran, Carbohydr. Res. 1978, 60, 519.
| Crossref | GoogleScholarGoogle Scholar |
[27] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 127, 124105.
| Crossref | GoogleScholarGoogle Scholar | 17902891PubMed |
[28] W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1986 (Wiley: New York).
[29] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory 2001 (Wiley-VCH Verlag GmbH).
[30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.; Wallingford, CT).
[31] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=d653910b8f837dc0c71d433ce1b59b78CAS |
[32] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=a3bd1120a7e50e4e25d0dc524b198b08CAS |
[33] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 126, 084108.
| Crossref | GoogleScholarGoogle Scholar | 17343441PubMed |
[34] L. A. Curtiss, P. C. Redfern, K. Raghavachari, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWrtrbJ&md5=7cb0189b78555f77f95711c4aa8a1300CAS |
[35] A. Karton, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016, 6, 292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsFOmtrs%3D&md5=6ed8d0a19f802f7dee280a60002edaacCAS |
[36] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2005, 123, 124107.
| Crossref | GoogleScholarGoogle Scholar | 16392475PubMed |
[37] L. A. Curtiss, P. C. Redfern, K. Raghavachari, Chem. Phys. Lett. 2010, 499, 168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KgtbjJ&md5=ee245b5ac2d57667277f04b1633ea41bCAS |
[38] A. Karton, R. J. O’Reilly, L. Radom, J. Phys. Chem. A 2012, 116, 4211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVaktrk%3D&md5=04ede869863d6807f04140c10edb9057CAS | 22497287PubMed |
[39] A. Karton, L. Goerigk, J. Comput. Chem. 2015, 36, 622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjt1Sgurc%3D&md5=0933a4ba79a8b01d59105a10e7aa65c7CAS | 25649643PubMed |
[40] L.-J. Yu, F. Sarrami, R. J. O’Reilly, A. Karton, Chem. Phys. 2015, 458, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOju7vN&md5=785b87fccad7de40deb204ee5a3acaf7CAS |
[41] A. Karton, Chem. Phys. Lett. 2014, 592, 330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlems70%3D&md5=1ffff30fcb66cb594fea928ae07c8a03CAS |
[42] G. da Silva, Angew. Chem., Int. Ed. 2010, 49, 7523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGit7nM&md5=bcdfeb00b26c0f08f4bf47481c14eee0CAS |
[43] A. Karton, J. M. L. Martin, J. Chem. Phys. 2012, 136, 124114.
| Crossref | GoogleScholarGoogle Scholar | 22462842PubMed |
[44] R. S. Assary, P. C. Redfern, J. Greeley, L. A. Curtiss, J. Phys. Chem. B 2011, 115, 4341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFaktr8%3D&md5=7b1461a96ea1dd705674ca0d8dcbbef1CAS | 21443225PubMed |
[45] A. Karton, R. J. O’Reilly, B. Chan, L. Radom, J. Chem. Theory Comput. 2012, 8, 3128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGhsrvE&md5=50c933c3c02d82262b775aa38c43db68CAS | 26605724PubMed |
[46] L. Vereecken, J. S. Francisco, Chem. Soc. Rev. 2012, 41, 6259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaktr%2FK&md5=246e75d52ad106204232465693e86152CAS | 22660412PubMed |
[47] E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, B. Abel, Science 2007, 315, 497.
| Crossref | GoogleScholarGoogle Scholar | 17255507PubMed |
[48] V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Fuel Process. Technol. 2001, 70, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlOhsr8%3D&md5=bcc1268b4ba275566896bbf2ee764d28CAS |
[49] V. Minkova, M. Razvigorova, M. Goranova, L. Ljutzkanov, G. Angelova, Fuel 1991, 70, 713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksFeisLw%3D&md5=47335123cb5156cf247c41d7232e6adeCAS |
[50] J. Scheirs, G. Camino, W. Tumiatti, Eur. Polym. J. 2001, 37, 933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFCgs70%3D&md5=1bcddec28c22c1bcdd80745de2b109afCAS |
[51] W. Plazinski, A. Plazinska, M. Drach, Phys. Chem. Chem. Phys. 2015, 17, 21622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Sqt7zK&md5=a2a524f48b7d49cb8fdfa15e356a33a1CAS | 26226084PubMed |
[52] R. S. Assary, L. A. Curtiss, Energy Fuels 2012, 26, 1344.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CjtrfI&md5=05291380bf2f44d0f659dbdbacba277fCAS |
[53] G. Koutsantonis, Y. Kim, Aust. J. Chem. 2012, 65, 695.
| Crossref | GoogleScholarGoogle Scholar |