Theoretical Investigation of Oxidative Cleavage of Cholesterol by Dual O2 Activation and Sulfide Reduction
Richmond Lee A and Michelle L. Coote A BA ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
B Corresponding author. Email: michelle.coote@anu.edu.au
Australian Journal of Chemistry 69(9) 933-942 https://doi.org/10.1071/CH16093
Submitted: 17 February 2016 Accepted: 21 March 2016 Published: 14 April 2016
Abstract
Theoretical calculations are used to explore a plausible mechanism for oxidative cleavage of cholesterol mediated by two ground-state O2 molecules. It is shown that cholesterol can form a stable pre-complex with the two triplet dioxygen molecules, which could be further stabilized in an enzyme environment by methionine (modelled here as Me2S). Triplet O2 can then react to form a metastable biradical species that is then further stabilized by reaction with a second triplet O2, resulting in an intermediate that undergoes an intersystem crossing to form a diperoxy intermediate. This in turn is reduced to the final cholesterol secosterol aldehyde product by the same methionine, which may provide an explanation for the presence of methionine sulfoxide fractions in Aβ amyloid peptide. The mechanistic theozyme model predicts an energetically viable pathway that is unusual in that triplet oxygen is normally considered to be unreactive in this context unless first excited to the singlet state. Although we show that the same reaction can also proceed via photosensitization of the complex if an appropriate cofactor is available, the energetics for the triplet oxygen reaction are competitive. Reactivity studies revealed that the reaction can also occur with other unsaturated substrates, with the lowest barriers occurring with more nucleophilic alkenes, or by rendering the 3O2 more electrophilic via non-covalent interactions with Me2S.
References
[1] (a) J. C. Scheinost, H. Wang, G. E. Boldt, J. Offer, P. Wentworth, Angew. Chem. Int. Ed. 2008, 47, 3919.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeru7g%3D&md5=1cc8b39666823404a576140f37039f37CAS |
(b) Q. Zhang, E. T. Powers, J. Nieva, M. E. Huff, M. A. Dendle, J. Bieschke, C. G. Glabe, A. Eschenmoser, P. Wentworth, R. A. Lerner, J. W. Kelly, Proc. Natl. Acad. Sci. USA 2004, 101, 4752.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Usui, J. D. Hulleman, J. F. Paulsson, S. J. Siegel, E. T. Powers, J. W. Kelly, Proc. Natl. Acad. Sci. USA 2009, 106, 18563.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Bieschke, Q. Zhang, D. A. Bosco, R. A. Lerner, E. T. Powers, P. Wentworth, J. W. Kelly, Acc. Chem. Res. 2006, 39, 611.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Nieva, B.-D. Song, J. K. Rogel, D. Kujawara, L. Altobel, A. Izharrudin, G. E. Boldt, R. K. Grover, A. D. Wentworth, P. Wentworth, Chem. Biol. 2011, 18, 920.
| Crossref | GoogleScholarGoogle Scholar |
[2] D. A. Bosco, D. M. Fowler, Q. Zhang, J. Nieva, E. T. Powers, P. Wentworth, R. A. Lerner, J. W. Kelly, Nat. Chem. Biol. 2006, 2, 249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFSqtrk%3D&md5=0e03d8026b0ac59bc998b5208c872250CAS | 16565714PubMed |
[3] P. Wentworth, J. Nieva, C. Takeuchi, R. Galve, A. D. Wentworth, R. B. Dilley, G. A. DeLaria, A. Saven, B. M. Babior, K. D. Janda, A. Eschenmoser, R. A. Lerner, Science 2003, 302, 1053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Cmsb0%3D&md5=b56af072be1a23d5540e249b8c2bf9b9CAS | 14605372PubMed |
[4] (a) R. Criegee, Angew. Chem. Int. Ed. Engl. 1975, 14, 745.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Bailey, Chem. Rev. 1958, 58, 925.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. Lee, M. L. Coote, Phys. Chem. Chem. Phys. 2013, 15, 16428.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCru7bF&md5=8d3e44fe6f68732395857c019d178ff0CAS | 23949571PubMed |
[6] (a) B. M. Babior, C. Takeuchi, J. Ruedi, A. Gutierrez, P. Wentworth, Proc. Natl. Acad. Sci. USA 2003, 100, 3031.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVCns7g%3D&md5=4770229d5dac39514afa1dfd0cb50044CAS | 12601145PubMed |
(b) P. Wentworth, J. E. McDunn, A. D. Wentworth, C. Takeuchi, J. Nieva, T. Jones, C. Bautista, J. M. Ruedi, A. Gutierrez, K. D. Janda, B. M. Babior, A. Eschenmoser, R. A. Lerner, Science 2002, 298, 2195.
| Crossref | GoogleScholarGoogle Scholar |
[7] K. Yamashita, T. Miyoshi, T. Arai, N. Endo, H. Itoh, K. Makino, K. Mizugishi, T. Uchiyama, M. Sasada, Proc. Natl. Acad. Sci. USA 2008, 105, 16912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqt77E&md5=8c130e4736562f8b85728b2db961bdbbCAS | 18971328PubMed |
[8] (a) C. Schweitzer, R. Schmidt, Chem. Rev. 2003, 103, 1685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlWmtLo%3D&md5=5204bd2a60bfc0738ee1bcf07f44d39aCAS | 12744692PubMed |
(b) M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) P. R. Ogilby, Chem. Soc. Rev. 2010, 39, 3181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFygs7k%3D&md5=4a611f18769b6583882b8b6adf751093CAS | 20571680PubMed |
(b) R. W. Redmond, I. E. Kochevar, Photochem. Photobiol. 2006, 82, 1178.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. R. Weishaupt, C. J. Gomer, T. J. Dougherty, Cancer Res. 1976, 36, 2326.
| 1:CAS:528:DyaE28XkslKisrw%3D&md5=b5812adba49497822ed1b28a3ac6e8f6CAS | 1277137PubMed |
[11] R. Bonnett, Chemical Aspects of Photodynamic Therapy 2000 (Gordon and Breach Science Publishers: Amsterdam).
[12] E. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlent7Y%3D&md5=5c91ce8210643abbea2dd35fbda6915eCAS |
[13] (a) W. Fenical, D. R. Kearns, P. Radlick, J. Am. Chem. Soc. 1969, 91, 3396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktlyjurY%3D&md5=c045e70a236dadf64f674d47787e7a57CAS |
(b) F. McCapra, R. A. Hann, J. Chem. Soc. D 1969, 442.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. H. Richardson, V. Hodge, J. Org. Chem. 1970, 35, 1216.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. G. Schultz, R. H. Schlessinger, Tetrahedron Lett. 1970, 11, 2731.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. S. Foote, J. W.-P. Lin, Tetrahedron Lett. 1988, 9, 3269.
(f) M. Reguero, F. Bernardi, A. Bottoni, M. Olivucci, M. A. Robb, J. Am. Chem. Soc. 1991, 113, 1566.
| Crossref | GoogleScholarGoogle Scholar |
[14] R. Lin, F. Chen, N. Jiao, Org. Lett. 2012, 14, 4158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFalurfN&md5=5c15bc1b17a9eab7ea18e1db6a5048c0CAS | 22853190PubMed |
[15] A. L. J. Beckwith, A. G. Davies, I. G. E. Davison, A. Maccoll, M. H. Mruzek, J. Chem. Soc., Perkin Trans. 2 1989, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls1Cisg%3D%3D&md5=d387714efd99adbeb23625f274b9f1d8CAS |
[16] J. Brinkhorst, S. J. Nara, D. A. Pratt, J. Am. Chem. Soc. 2008, 130, 12224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVemsrbE&md5=10dabad7154943172081305c3550ef71CAS | 18722442PubMed |
[17] M. Uemi, G. E. Ronsein, S. Miyamoto, M. H. G. Medeiros, P. D. Mascio, Chem. Res. Toxicol. 2009, 22, 875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSlurg%3D&md5=67b26def98d6efc2accd14e2ef2e9c2dCAS | 19358613PubMed |
[18] (a) H. Mang, J. Gross, M. Lara, C. Goessler, H. E. Schoemaker, G. M. Guebitz, W. Kroutil, Angew. Chem. Int. Ed. 2006, 45, 5201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot12msbc%3D&md5=94973fd74e3819e9f575583f1dfe883eCAS |
(b) M. Lara, F. G. Mutti, S. M. Glueck, W. Kroutil, J. Am. Chem. Soc. 2009, 131, 5368.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. Rajagopalan, M. Schober, A. Emmerstorfer, L. Hammerer, A. Migglautsch, B. Seisser, S. M. Glueck, F. Niehaus, J. Eck, H. Pichler, K. Gruber, W. Kroutil, ChemBioChem 2013, 14, 2427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWmtLjE&md5=58351bf479693276e9a155669b3e404eCAS | 24318692PubMed |
[20] H. Yin, L. Xu, N. A. Porter, Chem. Rev. 2011, 111, 5944.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnsrvM&md5=ba2a9b34c1b249cf1555b3203befaca8CAS | 21861450PubMed |
[21] (a) K. Yamaguchi, Y. Yoshioka, T. Fueno, Chem. Phys. Lett. 1977, 46, 360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhslOlsb0%3D&md5=912bbc9db1d8b8acbd12279757729f75CAS |
(b) K. Yamaguchi, Y. Yoshioka, K. Takatsuka, T. Fueno, Theor. Chim. Acta 1978, 48, 185.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Yamaguchi, Y. Takahara, T. Fueno, K. N. Houk, Theor. Chim. Acta 1988, 73, 337.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Yamanaka, T. Kawakami, H. Nagao, K. Yamaguchi, Chem. Phys. Lett. 1994, 231, 25.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) A. Maranzana, G. Ghigo, G. Tonachini, J. Am. Chem. Soc. 2000, 122, 1414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFejtg%3D%3D&md5=80c899a961112596e2d33966afbca476CAS |
(b) D. H. Ess, T. C. Cook, J. Phys. Chem. A 2012, 116, 4922.
| Crossref | GoogleScholarGoogle Scholar |
[23] R. Peverati, D. G. Truhlar, J. Phys. Chem. Lett. 2011, 2, 2810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqsbzN&md5=88030aefb37f8d00bdaa9eac3928e5a4CAS |
[24] (a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFOiuw%3D%3D&md5=10d5689bc9f0eb2b71c3dd189a77d50dCAS |
(b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. C. Hariharan, J. A. Pople, Theor. Chem. Acc. 1973, 28, 213.
| Crossref | GoogleScholarGoogle Scholar |
[25] T. G. Slanger, P. C. Cosby, J. Phys. Chem. 1988, 92, 267.
| 1:CAS:528:DyaL1cXmsFSgsw%3D%3D&md5=9145644054e78585ed10c4512b677431CAS |
[26] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=f1f2fd777bfa6031de0c9df9721acc7bCAS | 19366259PubMed |
[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01 2009 (Gaussian Inc.: Wallingford, CT).
[28] J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFersbY%3D&md5=918d1d5ec85957e3f53d1ebfc1d62952CAS |
[29] A. Nickon, J. F. Bagil, J. Am. Chem. Soc. 1961, 83, 1498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXns1ejtw%3D%3D&md5=f0fdc4f8ae9f1190b7e04002b983b5fcCAS |
[30] (a) D. H. Ess, S. E. Wheeler, R. G. Iafe, L. Xu, N. Çelebi-Ölçüm, K. N. Houk, Angew. Chem. Int. Ed. 2008, 47, 7592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GltLzJ&md5=bf6082421f9c5671995828481097c5abCAS |
(b) D. A. Singleton, C. Hang, M. J. Szymanski, M. P. Meyer, A. G. Leach, K. T. Kuwata, J. S. Chen, A. Greer, C. S. Foote, K. N. Houk, J. Am. Chem. Soc. 2003, 125, 1319.
| Crossref | GoogleScholarGoogle Scholar |
[31] X. Song, M. G. Fanelli, J. M. Cook, F. Bai, C. A. Parish, J. Phys. Chem. A 2012, 116, 4934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSiu70%3D&md5=7db7a2b6fa62bcb6b830e78939f174c9CAS | 22515263PubMed |
[32] (a) K. Fukui, Theory of Orientation and Stereoselection 1975 (Springer-Verlag: Berlin).
(b) K. Fukui, Science 1982, 218, 747.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Fukui, T. Yonezawa, C. Nagata, H. Shingu, J. Chem. Phys. 1954, 22, 1433.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 1952, 20, 722.
| Crossref | GoogleScholarGoogle Scholar |
[33] P. A. Kollman, B. Kuhn, M. Peräkylä, J. Phys. Chem. B 2002, 106, 1537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVGhtQ%3D%3D&md5=2928fc42f8b7e95c9843ea5875099fbfCAS |
[34] (a) F. Bernardi, M. Olivucci, M. A. Robb, Pure Appl. Chem. 1995, 67, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtVWhs7s%3D&md5=251fe69346a850c759e92795ed54222dCAS |
(b) M. Klessinger, Angew. Chem. Int. Ed. Engl. 1995, 34, 549.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. A. Robb, F. Bernardi, M. Olivucci, Pure Appl. Chem. 1995, 67, 783.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Bernardi, M. Olivucci, M. A. Robb, Chem. Soc. Rev. 1996, 25, 321.
(e) M. J. Bearpark, M. A. Robb, Reviews of Reactive Intermediate Chemistry 2006 (John Wiley & Sons: New York, NY).
(f) T. J. Martinez, Nature 2010, 467, 412.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. N. Harvey, WIREs Comput. Mol. Sci. 2014, 4, 1.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. N. Harvey, Phys. Chem. Chem. Phys. 2007, 9, 331.
| Crossref | GoogleScholarGoogle Scholar |
[35] R. D. Small, R. D. Small, J. Am. Chem. Soc. 1978, 100, 4512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltVOns7w%3D&md5=09236ab99efc7a0df143fc36ac7af3c3CAS |
[36] (a) O. A. Kholdeeva, I. D. Ivanchikova, O. V. Zalomaeva, A. B. Sorokin, I. Y. Skobelev, E. P. Talsi, J. Phys. Chem. B 2011, 115, 11971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CqtrbF&md5=affc3c33c03e74a4e7ebc44ca231195aCAS | 21913639PubMed |
(b) F. Najjar, C. André-Barrès, R. Lauricella, L. Gorrichon, B. Tuccio, Tetrahedron Lett. 2005, 46, 2117.
(c) K. B. Clark, J. A. Howard, A. R. Oyler, J. Am. Chem. Soc. 1997, 119, 9560.
| Crossref | GoogleScholarGoogle Scholar |
(d) C.-H. Chou, W. S. Trahanovsky, J. Org. Chem. 1995, 60, 5449.
| Crossref | GoogleScholarGoogle Scholar |
(e) C.-S. Huang, C.-C. Peng, C.-H. Chou, Tetrahedron Lett. 1994, 35, 4175.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Seip, H.-D. Brauer, J. Am. Chem. Soc. 1992, 114, 4486.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. D. Bartlett, R. Banavali, J. Org. Chem. 1991, 56, 6043.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. J. Turro, Tetrahedron 1985, 41, 2089.
| Crossref | GoogleScholarGoogle Scholar |
(i) N. J. Turro, M.-F. Chow, Y. Ito, J. Am. Chem. Soc. 1978, 100, 5580.
| Crossref | GoogleScholarGoogle Scholar |
(j) N. J. Turro, V. Ramamurthy, K.-C. Liu, A. Krebs, R. Kemper, J. Am. Chem. Soc. 1976, 98, 6758.
| Crossref | GoogleScholarGoogle Scholar |
(k) D. H. R. Barton, R. K. Haynes, G. Leclerc, P. D. Magnus, I. D. Menzies, J. Chem. Soc., Perkin Trans. 1 1975, 2055.
| Crossref | GoogleScholarGoogle Scholar |
(l) C. M. Bowes, D. F. Montecalvo, F. Sondheimer, Tetrahedron Lett. 1973, 14, 3181.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. R. Reddy, M. Bendikov, Chem. Commun. 2006, 1179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGgt70%3D&md5=ec1fa3f7910c3a9fe3b8d1100fe7a969CAS |
[38] J. P. Klinman, Acc. Chem. Res. 2007, 40, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVylsL0%3D&md5=993f9fc3ee2e21fa5d91b92f959e9509CAS | 17474709PubMed |
[39] (a) J. Na, K. N. Houk, J. Am. Chem. Soc. 1996, 118, 9204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtF2iu7o%3D&md5=5896ff0ce5040a82d8042240e63ec2e0CAS |
(b) D. J. Tantillo, J. Chen, K. N. Houk, Curr. Opin. Chem. Biol. 1998, 2, 743.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Zhang, J. DeChancie, H. Gunaydin, A. B. Chowdry, F. R. Clemente, A. J. T. Smith, T. M. Handel, K. N. Houk, J. Org. Chem. 2008, 73, 889.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Kiss, N. Çelebi-Ölçüm, R. Moretti, D. Baker, K. N. Houk, Angew. Chem. Int. Ed. 2013, 52, 5700.
| Crossref | GoogleScholarGoogle Scholar |
[40] Y. Goto, J. P. Klinman, Biochemistry 2002, 41, 13637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWqs7g%3D&md5=2a6b0e22764334c4f26b1f5daa513d5aCAS | 12427025PubMed |
[41] (a) E. R. Stadtman, J. Moskovitz, R. L. Levine, Antioxid. Redox Signal. 2003, 5, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVersb8%3D&md5=20270fc0eee7af53cccad3f4be5dd139CAS | 14580313PubMed |
(b) C. Schöneich, A. Aced, K.-D. Asmus, J. Am. Chem. Soc. 1993, 115, 11376.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. A. Butterfield, A. M. Swomley, R. Sultana, Antioxid. Redox Signal. 2013, 19, 823.
| Crossref | GoogleScholarGoogle Scholar |
[42] S. R. Gabbita, M. Y. Aksenov, M. A. Lovell, W. R. Markesbery, J. Neurochem. 1999, 73, 1660.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlOhsbk%3D&md5=8ff1883044a82420645705f73be82a11CAS |
[43] J. Naslund, A. Schierhorn, U. Hellman, L. Lannfelt, A. D. Roses, L. O. Tjernberg, J. Silberring, S. E. Gandy, B. Winblad, P. Greengard, C. Nordstedt, L. Terenius, Proc. Natl. Acad. Sci. USA 1994, 91, 8378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVags7w%3D&md5=a1ce092a656d70745789d7dbe0c99d9cCAS | 8078890PubMed |
[44] (a) J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625.
| 1:CAS:528:DC%2BC3MXht1egtro%3D&md5=14feaca14602aa23bdb9e771cf8c16daCAS | 21516178PubMed |
(b) E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
| Crossref | GoogleScholarGoogle Scholar |
[45] (a) L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem. 2008, 73, 4615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVaqt7w%3D&md5=c36adc2c7f05001b86e51b0fb2a71d46CAS | 18484771PubMed |
(b) L. R. Domingo, P. Pérez, Org. Biomol. Chem. 2011, 9, 7168.
| Crossref | GoogleScholarGoogle Scholar |