Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Alloying Buffer Layers in Colloidal CdSe/ZnS Core/Shell Nanocrystals

Huichao Zhang A , Yonghong Ye B , Boping Yang A , Li Shen A , Yiping Cui A and Jiayu Zhang A C
+ Author Affiliations
- Author Affiliations

A Department of Electronic Engineering, Southeast University, Nanjing 210096, China.

B Department of Physics, Nanjing Normal University, Nanjing 210097, China.

C Corresponding author. Email: jyzhang@seu.edu.cn

Australian Journal of Chemistry 67(6) 844-850 https://doi.org/10.1071/CH13574
Submitted: 23 October 2013  Accepted: 17 January 2014   Published: 19 February 2014

Abstract

When a ZnS shell is coated onto a CdSe core, some non-radiative defects are formed with the relaxation of the strain induced by the large lattice mismatch between CdSe and ZnS even though there are Zn0.5Cd0.5Se or ZnSe buffer layers, as indicated by the decrease of photoluminescent (PL) quantum yield and the reverse evolution of temperature-dependent time-resolved PL decay. X-Ray photoelectron spectroscopy analysis reveals that these defects are induced by the formation of an interfacial alloy during the epitaxy process. These defects could be significantly suppressed if the ZnxCd1–xSeyS1–y alloy buffer layer is artificially introduced.


References

[1]  M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998, 281, 2013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlKgurw%3D&md5=1653bc47df1d91096c8bb0715758eab5CAS | 9748157PubMed |

[2]  D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, Science 2003, 300, 1434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGktLc%3D&md5=d10e73269e0eb1093a5d80aab2928081CAS | 12775841PubMed |

[3]  X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslOhtw%3D%3D&md5=6f8298765c90637be10e3d705a2d99d8CAS | 15681376PubMed |

[4]  J. A. Smyder, T. D. Krauss, Mater. Today 2011, 14, 382.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  D. Siegberg, D. P. Herten, Aust. J. Chem. 2011, 64, 512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyhs7g%3D&md5=f5def1812af5d27f1059bed77339c70fCAS |

[6]  H. B. Shen, H. Z. Wang, C. H. Zhou, J. Z. Niu, H. Yuan, L. Ma, L. S. Li, Dalton Trans. 2011, 40, 9180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFagur7F&md5=d8e2c6360e95e1f0cdea62d0b2f0a122CAS |

[7]  X. B. Chen, Y. B. Lou, A. C. Samia, C. Burda, Nano Lett. 2003, 3, 799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslOhsbk%3D&md5=b51d7dcc3b78351b9500869d8a1a9357CAS |

[8]  J. M. Zhang, X. K. Zhang, J. Y. Zhang, J. Phys. Chem. C 2010, 114, 3904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKitbY%3D&md5=e5c1dcb23fd1a499a418fff720aa2895CAS |

[9]  R. G. Xie, U. Kolb, J. X. Li, T. Basche, A. Mews, J. Am. Chem. Soc. 2005, 127, 7480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVSju7g%3D&md5=9d6395ce8d59fe467441b1ef02baec2eCAS |

[10]  W. W. Zheng, Z. X. Wang, J. van Tol, N. S. Dalal, G. F. Strouse, Nano Lett. 2012, 12, 3132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlOitbs%3D&md5=ef917d934a854b873befd64d9ff28d1bCAS |

[11]  G. Zorn, S. R. Dave, X. H. Gao, D. G. Castner, Anal. Chem. 2011, 83, 866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2hug%3D%3D&md5=f9b3bb0a888e9b67cd998c622495a13cCAS | 21226467PubMed |

[12]  X. Xia, Z. L. Liu, G. H. Du, Y. B. Li, M. Ma, J. Phys. Chem. C 2010, 114, 13414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Kksb4%3D&md5=5241e40a31ad0f8af51e49cb1b39d711CAS |

[13]  D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, H. Weller, J. Phys. Chem. B 2004, 108, 18826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Wlur4%3D&md5=5467a920d9d7d6ab1d424d872f06fd19CAS |

[14]  S. Rosen, O. Schwartz, D. Oron, Phys. Rev. Lett. 2010, 104, 157404.
         | Crossref | GoogleScholarGoogle Scholar | 20482017PubMed |

[15]  H. B. Shen, H. Z. Wang, Z. J. Tang, J. Z. Niu, S. Y. Lou, Z. L. Du, L. S. Li, CrystEngComm 2009, 11, 1733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSks7%2FE&md5=1a4354c982ab8b6ed8ef289950ff2033CAS |

[16]  P. Reiss, S. Carayon, J. Bleuse, A. Pron, Synth. Met. 2003, 139, 649.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVKqsrs%3D&md5=fc7a0d54f10fc6207c4d20bc4f3679b5CAS |

[17]  B. Chon, S. J. Lim, W. Kim, J. Seo, H. Kang, T. Joo, J. Hwang, S. K. Shin, Phys. Chem. Chem. Phys. 2010, 12, 9312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSqtb8%3D&md5=e42a0e27906ef2af28c70df71a8d99d4CAS | 20607188PubMed |

[18]  S. S. Xu, H. B. Shen, C. H. Zhou, H. Yuan, C. S. Liu, H. Z. Wang, L. Ma, L. S. Li, J. Phys. Chem. C 2011, 115, 20876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oju7bI&md5=75f3391b21b8adfd8558d878316252aaCAS |

[19]  P. T. Jing, J. J. Zheng, M. Ikezawa, X. Y. Liu, S. Z. Lv, X. G. Kong, J. L. Zhao, Y. Masumoto, J. Phys. Chem. C 2009, 113, 13545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotleitrw%3D&md5=55efc435c550eb39980e45ec3665ab8fCAS |

[20]  R. M. Wang, Y. P. Zhang, C. L. Gan, J. Muhammad, M. Xiao, Appl. Phys. Lett. 2010, 96, 151107.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. C. Zhang, Y. H. Ye, J. Y. Zhang, Y. P. Cui, B. P. Yang, L. Shen, J. Phys. Chem. C 2012, 116, 15660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Gisb4%3D&md5=fb1ceadc05bfc2dd4c8722438cc5f495CAS |

[22]  J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, X. G. Peng, J. Am. Chem. Soc. 2003, 125, 12567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVOisLs%3D&md5=f17a6a6f3f823d87073c4db57e0ff595CAS | 14531702PubMed |

[23]  D. Battaglia, B. Blackman, X. G. Peng, J. Am. Chem. Soc. 2005, 127, 10889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlSntbo%3D&md5=25d934fc7e37970f3e10db4820b15dc1CAS | 16076195PubMed |

[24]  M. Jones, S. S. Lo, G. D. Scholes, Proc. Natl. Acad. Sci. USA 2009, 106, 3011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFyqtb0%3D&md5=9b22316c0767c290e8c54cc7cd2b78eaCAS | 19218443PubMed |

[25]  M. Jones, S. S. Lo, G. D. Scholes, J. Phys. Chem. C 2009, 113, 18632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SnsbbM&md5=adc97ea6d5171d5f50507fe4fca13163CAS |

[26]  H. Eshet, M. Grünwald, E. Rabani, Nano Lett. 2013, 13, 5880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsr%2FK&md5=7516f14053c7043f37cbe161c00d254fCAS | 24215466PubMed |

[27]  T. Wang, P. V. Radovanovic, J. Phys. Chem. C 2011, 115, 18473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmt7nF&md5=384644fadd95c1dda3516bdc245448caCAS |

[28]  J. P. Lu, H. W. Liu, C. Sun, M. R. Zheng, M. Nripan, G. S. Chen, G. M. Subodh, X. H. Zhang, C. H. Sow, Nanoscale 2012, 4, 976.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Cjtw%3D%3D&md5=6f1077bb319f8201b9c724e8176d4f4cCAS |

[29]  B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVamtr0%3D&md5=8835d82ddd03cce0e56c50ccfbaddc95CAS |

[30]  J. van Embden, J. Jasieniak, P. Mulvaney, J. Am. Chem. Soc. 2009, 131, 14299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFegsr7M&md5=40f31cd01d01893c298d0631080d63fcCAS | 19754114PubMed |

[31]  K. Huang, R. Demadrille, M. G. Silly, F. Sirotti, P. Reiss, O. Renault, ACS Nano 2010, 4, 4799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyntbc%3D&md5=d96329c62554d249a80f5756a0793b76CAS | 20666468PubMed |

[32]  S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 1991, 17, 927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XptlGhug%3D%3D&md5=46e510c65a9ad5804eb7f76fbcdb2e5aCAS |

[33]  R. E. Galian, M. de la Guardia, J. Pérez-Prieto, Langmuir 2011, 27, 1942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOjtw%3D%3D&md5=d3a3fd86523fd05bf45e9a81395f2a53CAS | 21222467PubMed |

[34]  C. H. Pan, L. Z. Zhao, The Foundation of Electron Spectroscopy 1981 (Science Press: Beijing).

[35]  J. C. Phillips, Bonds and Bands in Semiconductors 1973 (Academic Press: New York, NY).

[36]  J. F. Zhu, Y. S. Ma, S. X. Zhuang, Surf. Sci. 2009, 603, 1802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOltr4%3D&md5=83799c65ad24c4fa8ef3b3988c99858eCAS |

[37]  Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, ACS Nano 2010, 4, 3789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2jsr8%3D&md5=a92ce3a5f077e83f784bcbb0558368cfCAS | 20527802PubMed |

[38]  F. Garcia-Santamaria, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, V. I. Klimov, Nano Lett. 2011, 11, 687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Ciug%3D%3D&md5=5ba4c55a40c7e054e84d9c8c727b0457CAS | 21207930PubMed |

[39]  Y. M. Sung, Y. J. Lee, K. S. Park, J. Am. Chem. Soc. 2006, 128, 9002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVShsro%3D&md5=257520a82f4e4bc65db72eef39c87d92CAS | 16834351PubMed |

[40]  S. K. Panda, S. G. Hickey, C. Waurisch, A. Eychmuller, J. Mater. Chem. 2011, 21, 11550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVOltb4%3D&md5=80a1c4661982ac25b027d560fdc01e0fCAS |

[41]  S. Z. Kang, L. D. Jia, X. Q. Li, J. Mu, Colloids Surf A 2012, 398, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVGntLo%3D&md5=baf1db55222bdabba59d355b5b91418dCAS |

[42]  N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, Z. Hens, Chem. Mater. 2012, 24, 311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsbnE&md5=5606a1f11ffcb640efe2e6243a5aa0ebCAS |

[43]  J. Cho, Y. K. Jung, J. K. Lee, J. Mater. Chem. 2012, 22, 10827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslWmtbg%3D&md5=439485190fa7a34f735565c7c222ad39CAS |

[44]  D. Ratchford, K. Dziatkowski, T. Hartsfield, X. Q. Li, Y. Gao, Z. Y. Tang, J. Appl. Phys. 2011, 109, 103509.
         | Crossref | GoogleScholarGoogle Scholar |