Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Revisiting Staudinger and Ruzicka’s altered pyrethrolone: the cyclopentadienone dimers derived from pyrethrin I, cinerin I and jasmolin I

Oliver E. Hutt A , Jamie A. Freemont A , Stella Kyi A , Stuart W. Littler A , Ross P. McGeary B , Peter J. Duggan https://orcid.org/0000-0002-6056-5367 A C , John Tsanaktsidis A , Helen F. Cole D , Maurice G. Kerr D , Elizabeth H. Krenske https://orcid.org/0000-0003-1911-0501 B and John H. Ryan https://orcid.org/0000-0003-2192-5099 A *
+ Author Affiliations
- Author Affiliations

A CSIRO Manufacturing, Ian Wark Laboratory, Bayview Avenue, Clayton, Vic. 3168, Australia.

B School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia.

C College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.

D Botanical Resources Australia Pty Ltd, 44-46 Industrial Drive, Ulverstone, Tas. 7315, Australia.

* Correspondence to: jack.ryan@csiro.au

Handling Editor: Craig Hutton

Australian Journal of Chemistry 77, CH23197 https://doi.org/10.1071/CH23197
Submitted: 24 October 2023  Accepted: 14 February 2024  Published online: 8 March 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The reactions of pyrethrin I, cinerin I and jasmolin I with sodium hydroxide in ethanol afforded an approximately 1:1 ratio of two respective cyclopentadienone dimers, isolated in good yield. A combination of one-dimensional and two-dimensional NMR spectroscopic studies allowed determination of the structure and stereochemistry of the dimers. The dimers are formed by cycloaddition reactions of the less substituted alkene of the cyclopentadienone, and by regioisomeric endo transition states. Density functional theory calculations were in accord with the experimental findings showing the products formed by ambimodal transition states. One such transition state led to two initial products with the less stable product undergoing facile conversion to the other more stable, experimentally observed product. These studies clarify the structures of the altered pyrethrolone reported by Staudinger and Ruzicka in 1924.

Keywords: altered pyrethrolone, biologically active molecules, cinerin I, cyclopentadienone, density functional calculations, dimerisation, electrocyclic reactions, elimination, jasmolin I, pyrethrin I.

References

Fist AJ, Chung B. Pyrethrum and poppy: two Tasmanian industries of world significance. Acta Hortic 2015; 1073: 85-90.
| Crossref | Google Scholar |

Crombie L. Chemistry of Pyrethrins. In: Casida JE, Quistad GB, editors. Pyrethrum Flowers: Production, Chemistry, Toxicology, and Uses. New York, NY, USA: Oxford University Press; 1995. pp. 1232–1193.

Krief A. Pyrethroid insecticides. Arkivoc 2021; Part I: 48-54.
| Google Scholar |

Fujitani J. Chemistry and pharmacology of insect powder. Arch Exp Pathol Pharmakol 1909; 61: 47-75.
| Crossref | Google Scholar |

Yamamoto R. The insecticidal principle in Chrysanthemum cinerariaefolium. Part I. J Chem Soc Jpn 1919; 40: 126.
| Google Scholar |

Yamamoto R. The insecticidal principle in Chrysanthemum cinerariaefolium. Parts II and III. On the constitution of the pyrethronic acid. J Chem Soc Jpn 1923; 44: 311.
| Google Scholar |

Staudinger H, Ruzicka L. Insektentötende Stoffe. X. Helv Chim Acta 1924; 7: 448-458 [In German].
| Crossref | Google Scholar |

LaForge FB, Barthel WF. Constituents of pyrethrum flowers. XVI. Heterogeneous nature of pyrethrolone. J Org Chem 1944; 09: 242-249.
| Crossref | Google Scholar |

LaForge FB, Barthel WF. Constituents of pyrethrum flowers. XVII. The isolation of five pyrethrolone semicarbazones. J Org Chem 1945; 10: 106-113.
| Crossref | Google Scholar |

10  LaForge FB, Barthel WF. Constituents of pyrethrum flowers. XVII. The structure and isomerism of pyrethrolone and cinerolone. J Org Chem 1945; 10: 114-120.
| Crossref | Google Scholar |

11  Godin PJ, Sleeman RJ, Snarey M, Thain EM. The jasmolins, new insecticidally active constituents of Chrysanthemum cinerariaefolium VIS. J Chem Soc C 1966; 332-334.
| Crossref | Google Scholar |

12  Crombie L, Harper SH. The chrysanthemumcarboxylic acids. Part VI. The configurations of the chrysanthemic acids. J Chem Soc 1954; 470.
| Crossref | Google Scholar |

13  Inouye Y, Takeshita Y, Ohno M. Studies on synthetic pyrethroids: part V. Synthesis of geometrical isomers of chrysanthemum dicarboxylic acid. Bull Agric Chem Soc Jpn 1955; 19: 193-199.
| Crossref | Google Scholar |

14  Katsuda Y, Chikamoto T, Inouye Y. The absolute configuration of naturally derived pyrethrolone and cinerolone. Bull Agric Chem Soc Jpn 1958; 22: 427-428.
| Crossref | Google Scholar |

15  Staudinger H, Ruzicka L. Insektentotende Stoffe. I. Über Isolierung und Konstitution des wirksamen Teiles des dalmatinischen Insektenpulvers. Helv Chim Acta 1924; 7: 177-201 [In German].
| Crossref | Google Scholar |

16  Staudinger H, Ruzicka L. Insektentotende Stoffe. II. Zur Konstitution der Chrysanthemum-monocarbonsäure und -dicarbonsäure. Helv Chim Acta 1924; 7: 201-211 [In German].
| Crossref | Google Scholar |

17  Staudinger H, Ruzicka L. Insektentotende Stoffe. III. Konstitution des Pyrethrolons. Helv Chim Acta 1924; 7: 212-235 [In German].
| Crossref | Google Scholar |

18  Ogliaruso MA, Romanelli MG, Becker EI. Chemistry of cyclopentadienones. Chem Rev 1965; 65: 261-367.
| Crossref | Google Scholar |

19  LaForge FB, Green N, Schechter MS. Dimerized cyclopentadienones from esters of allethrolone. J Am Chem Soc 1952; 74: 5392-5394.
| Crossref | Google Scholar |

20  Allen CFH, VanAllen JA. A carbonyl bridged compound in which the bridge ring is saturated. J Org Chem 1955; 20: 323-327.
| Crossref | Google Scholar |

21  Crombie L, Elliot M, Harper SH. Experiments on the synthesis of the pyrethrins. Part III. Synthesis of dihydrocinerin I and tetrahydropyrethrin I; a study of the action of N-bromosuccinimide on 3-methyl-2-n-alkyl (and alkenyl) cyclopent-2-en-1-ones. J Chem Soc 1950; 971-978.
| Crossref | Google Scholar |

22  Elliott M, Harper SH, Kazi MA. Experiments on the synthesis of the pyrethrins. XIV. Rethrins and the cyclopentadienone related to 3-methylcyclopent-2-enone. J Sci Food Agric 1967; 18: 167-171.
| Crossref | Google Scholar |

23  Guo Y, Xie Y, Wu G, Cheng T, Zhu S, Yan S, Jin H, Zhang W. Xylopidimers A–E, five new guaiane dimers with various carbon skeletons from the roots of Xylopia vielana. ACS Omega 2019; 4: 2047-2052.
| Crossref | Google Scholar | PubMed |

24  Kong X, Yang S, Yu F, Vasamsetty L, Liu J, Liu S, Liu X, Fang X. Cyclopentadienone formation from β,γ-unsaturated cyclopentenones and its application in Diels–Alder reactions. J Org Chem 2018; 83: 8953-8961.
| Crossref | Google Scholar | PubMed |

25  Harmata M, Barnes CL, Brackley J, Bohnert G, Kirchhoefer P, Kürti L, Rashatasakhon P. Generation of cyclopentadienones from 2-bromocyclopentenones. J Org Chem 2001; 66: 5232-5236.
| Crossref | Google Scholar | PubMed |

26  Fuchs B, Pasternak M, Scharf G. The dimer of 2,3-dimethyl-3,4-(o,o’-biphenylene)cyclopentadienone: thermal and photochemical transformations. J Chem Soc, Chem Commun 1976; 53-54.
| Crossref | Google Scholar |

27  DePuy CH, Isaks M, Eilers KL, Morris GF. The formation of cyclopentadienones. J. Org. Chem 1964; 29: 3503-3507.
| Crossref | Google Scholar |

28  Eaton PE, Cole TW. The cubane system. J Am Chem Soc 1964; 86: 962-964.
| Crossref | Google Scholar |

29  Hutt OE, Freemont JA, Littler S, Duggan PJ, Tsanaktsidis J, Cole H, Kerr M, Ryan JH. Staudinger and Ruzicka’s altered pyrethrolone: the cyclopentadienone dimers derived from pyrethrin I. Acta Hortic 2015; 1073: 181-190.
| Crossref | Google Scholar |

30  Bickelhaupt FM, Houk KN. Analysing reaction rates with the distortion/interaction–activation strain model. Angew Chem Int Ed 2017; 56: 10070-10086.
| Crossref | Google Scholar | PubMed |

31  McLeod D, Thøgersen MK, Jessen NI, Jørgensen KA, Jamieson CS, Xue X-S, Houk KN, Liu F, Hoffmann R. Expanding the frontiers of higher-order cycloadditions. Acc Chem Res 2019; 52: 3488-3501.
| Crossref | Google Scholar | PubMed |

32  Quadrelli P, Romano S, Toma L, Caramella P. A bispericyclic transition structure allows for efficient relief of antiaromaticity enhancing reactivity and endo selectivity in the dimerization of the fleeting cyclopentadienone. J Org Chem 2003; 68: 6035-6038.
| Crossref | Google Scholar | PubMed |

33  Freemont JA, Littler SW, Hutt OE, Mauger S, Meyer AG, Winkler DA, Kerr MG, Ryan JH, Cole HF, Duggan PJ. Molecular makers for pyrethrin autoxidation in stored pyrethrum crop: analysis and structure determination. J Agric Food Chem 2016; 64: 7134-7141.
| Crossref | Google Scholar | PubMed |

34  Kamperdick C, Phuong NM, Sung TV, Adam G. Guaiane dimers from Xylopia vielana. Phytochem 2001; 56: 335-340.
| Crossref | Google Scholar | PubMed |

35  Crombie L, Pattenden G, Simmonds DJ. Carbon-13 magnetic resonance spectra of natural pyrethrins and related compounds. J Chem Soc Perkin Trans 1 1975; 1500-1502.
| Google Scholar | PubMed |

36  Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, revision C.01. Wallingford, CT, USA: Gaussian, Inc.; 2019.

37  Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785-789.
| Crossref | Google Scholar | PubMed |

38  Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648-5652.
| Crossref | Google Scholar |

39  Becke AD. A mixture of Hartree–Fock and local density-functional theories. J Chem Phys 1993; 98: 1372-1377.
| Crossref | Google Scholar |

40  Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 1994; 98: 11623-11627.
| Crossref | Google Scholar |

41  Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 2010; 132: 154104.
| Crossref | Google Scholar | PubMed |

42  Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 2009; 113: 6378-6396.
| Crossref | Google Scholar | PubMed |

43  Gonzalez C, Schlegel HB. An improved algorithm for reaction path following. J Chem Phys 1989; 90: 2154-2161.
| Crossref | Google Scholar |

44  Gonzalez C, Schlegel HB. Reaction path following mass-weighted internal coordinates. J Phys Chem 1990; 94: 5523-5527.
| Crossref | Google Scholar |