Heteroleptic lanthanide(III) complexes: synthetic utility and versatility of the unsubstituted bis-scorpionate ligand framework
Tajrian Chowdhury A , Samuel J. Horsewill A , Claire Wilson A and Joy H. Farnaby A *A School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
Australian Journal of Chemistry 75(9) 660-675 https://doi.org/10.1071/CH21313
Submitted: 1 December 2021 Accepted: 21 January 2022 Published: 3 April 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
The unsubstituted bis-hydrotris(1-pyrazolyl)borate) (Tp) ligand framework has been used to synthesise a range of heteroleptic Ln(III) coordination complexes [Ln(Tp)2(X)]. The precursor complexes [Ln(Tp)2(OTf)] 1-Ln (Ln = Y, Eu, Gd, Yb; OTf = triflate) were synthesised by reaction of Ln(OTf)3 with two equivalents of K(Tp). The 8-coordinate β-diketonate complexes [Ln(Tp)2(hfac)] 2-Ln (Ln = Y, Eu, Yb; hfac = hexafluoroacetylacetonate) were synthesised from Ln(OTf)3 by reacting 1-Ln generated in situ with an equivalent of K(hfac). The 7-coordinate amide complexes [Ln(Tp)2(N″)] 3-Ln (Ln = Y, Yb; N″ = bis(trimethylsilyl)amide) were synthesised from 1-Ln by reaction with K(N″). Reactivity of 3-Ln towards protonolysis was demonstrated by the isolation of the hydroxide dimer [{Y(Tp)2(μ-OH)}2] 4-Y from adventitious reaction with water and the aryloxide complex [Ln(Tp)2(OAr)] 5-Ln (Ln = Y, Yb; OAr = 2,6-tBu2-4-Me-phenoxide) from reaction with H(OAr). Full characterisation data are presented for all complexes, including solid-state molecular structure determination by single-crystal X-ray diffraction.
Keywords: coordination chemistry, heteroleptic complexes, inorganic synthesis, lanthanide, nitrogen heterocycle, rare earth, scorpionate ligand.
References
[1] S Trofimenko, J Am Chem Soc 1966, 88, 1842.| Crossref | GoogleScholarGoogle Scholar |
[2] S Trofimenko, JR Long, T Nappier, SG Shore, Inorg Synth 1970, 99.
| Crossref | GoogleScholarGoogle Scholar |
[3] KW Bagnall, AC Tempest, J Takats, AP Masino, Inorg Nucl Chem Lett 1976, 12, 555.
| Crossref | GoogleScholarGoogle Scholar |
[4] S Trofimenko, Chem Rev 1993, 93, 943.
| Crossref | GoogleScholarGoogle Scholar |
[5] N Marques, A Sella, J Takats, Chem Rev 2002, 102, 2137.
| Crossref | GoogleScholarGoogle Scholar | 12059264PubMed |
[6] X Zhang, GR Loppnow, R McDonald, J Takats, J Am Chem Soc 1995, 117, 7828.
| Crossref | GoogleScholarGoogle Scholar |
[7] AC Hillier, S-Y Liu, A Sella, MRJ Elsegood, Inorg Chem 2000, 39, 2635.
| Crossref | GoogleScholarGoogle Scholar | 11197020PubMed |
[8] M Kühling, R McDonald, P Liebing, L Hilfert, MJ Ferguson, J Takats, FT Edelmann, Dalton Trans 2016, 45, 10118.
| Crossref | GoogleScholarGoogle Scholar | 27151931PubMed |
[9] F Guégan, F Riobé, O Maury, J Jung, B Le Guennic, C Morell, D Luneau, Inorg Chem Front 2018, 5, 1346.
| Crossref | GoogleScholarGoogle Scholar |
[10] G-F Xu, Q-L Wang, P Gamez, Y Ma, R Clérac, J Tang, S-P Yan, P Cheng, D-Z Liao, Chem Commun 2010, 46, 1506.
| Crossref | GoogleScholarGoogle Scholar |
[11] G-F Xu, P Gamez, J Tang, R Clérac, Y-N Guo, Y Guo, Inorg Chem 2012, 51, 5693.
| Crossref | GoogleScholarGoogle Scholar | 22563719PubMed |
[12] W Yi, J Zhang, F Zhang, Y Zhang, Z Chen, X Zhou, Chem - Eur J 2013, 19, 11975.
| Crossref | GoogleScholarGoogle Scholar | 23873444PubMed |
[13] S-Y Liu, GH Maunder, A Sella, M Stevenson, DA Tocher, Inorg Chem 1996, 35, 76.
| Crossref | GoogleScholarGoogle Scholar | 11666167PubMed |
[14] XW Zhang, GH Maunder, S Gießmann, R Macdonald, MJ Ferguson, AH Bond, RD Rogers, A Sella, J Takats, Dalton Trans 2011, 40, 195.
| Crossref | GoogleScholarGoogle Scholar | 21072414PubMed |
[15] GM Ferrence, R McDonald, J Takats, Angew Chem, Int Ed 1999, 38, 2233.
| Crossref | GoogleScholarGoogle Scholar |
[16] J Cheng, MJ Ferguson, J Takats, J Am Chem Soc 2010, 132, 2.
| Crossref | GoogleScholarGoogle Scholar | 20014830PubMed |
[17] J Cheng, J Takats, MJ Ferguson, R McDonald, J Am Chem Soc 2008, 130, 1544.
| Crossref | GoogleScholarGoogle Scholar | 18197668PubMed |
[18] VM Birkelbach, C Stuhl, C Maichle-Mössmer, R Anwander, Organometallics 2019, 38, 4485.
| Crossref | GoogleScholarGoogle Scholar |
[19] WD Moffat, MVR Stainer, J Takats, Inorganica Chim Acta 1987, 139, 75.
| Crossref | GoogleScholarGoogle Scholar |
[20] MAJ Moss, CJ Jones, AJ Edwards, J Chem Soc, Dalton Trans 1989, 1393.
| Crossref | GoogleScholarGoogle Scholar |
[21] MAJ Moss, CJ Jones, Polyhedron 1990, 9, 697.
| Crossref | GoogleScholarGoogle Scholar |
[22] JL Galler, S Goodchild, J Gould, R McDonald, A Sella, Polyhedron 2004, 23, 253.
| Crossref | GoogleScholarGoogle Scholar |
[23] DL Reger, JA Lindeman, L Lebioda, Inorg Chem 1988, 27, 3923.
| Crossref | GoogleScholarGoogle Scholar |
[24] I Lopes, B Monteiro, G Lin, Â Domingos, N Marques, J Takats, J Organomet Chem 2001, 632, 119.
| Crossref | GoogleScholarGoogle Scholar |
[25] MD Taylor, Chem Rev 1962, 62, 503.
| Crossref | GoogleScholarGoogle Scholar |
[26] JR Hickson, SJ Horsewill, C Bamforth, J McGuire, C Wilson, S Sproules, JH Farnaby, Dalton Trans 2018, 47, 10692.
| Crossref | GoogleScholarGoogle Scholar | 29897068PubMed |
[27] DL Reger, JA Lindeman, L Lebioda, Inorganica Chim Acta 1987, 139, 71.
| Crossref | GoogleScholarGoogle Scholar |
[28] M Hardiman, J Pellisson, SE Barnes, PE Bisson, M Peter, Phys Rev B 1980, 22, 2175.
| Crossref | GoogleScholarGoogle Scholar |
[29] JR Hickson, SJ Horsewill, J McGuire, C Wilson, S Sproules, JH Farnaby, Chem Commun 2018, 54, 11284.
| Crossref | GoogleScholarGoogle Scholar |
[30] DF Evans, J Chem Soc (Resumed) 1959, 2003.
| Crossref | GoogleScholarGoogle Scholar |
[31] G Paolucci, J Zanon, V Lucchini, W-E Damrau, E Siebel, RD Fischer, Organometallics 2002, 21, 1088.
| Crossref | GoogleScholarGoogle Scholar |
[32] BM Schmiege, ME Fieser, JW Ziller, WJ Evans, Organometallics 2012, 31, 5591.
| Crossref | GoogleScholarGoogle Scholar |
[33] MW Löble, M Casimiro, DT Thielemann, P Oña-Burgos, I Fernández, PW Roesky, F Breher, Chem - Eur J 2012, 18, 5325.
| Crossref | GoogleScholarGoogle Scholar | 22422575PubMed |
[34] A Babai, A-V Mudring, Z fur Anorg Allg Chem 2006, 632, 1956.
| Crossref | GoogleScholarGoogle Scholar |
[35] S Tang, A-V Mudring, Cryst Growth Des 2011, 11, 1437.
| Crossref | GoogleScholarGoogle Scholar |
[36] RD Shannon, Acta Crystallogr, Sect A 1976, 32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[37] EE Delbridge, DT Dugah, CR Nelson, BW Skelton, AH White, Dalton Trans 2007, 143.
| Crossref | GoogleScholarGoogle Scholar | 17160184PubMed |
[38] T Le Borgne, J-M Bénech, S Floquet, G Bernardinelli, C Aliprandini, P Bettens, C Piguet, Dalton Trans 2003, 3856.
| Crossref | GoogleScholarGoogle Scholar |
[39] Hickson JR. Developing new routes to f-element heterometallic complexes. PhD Thesis, Imperial College London, UK; 2019.
[40] Horsewill SJ. Modular synthesis of lanthanide heterobimetallic complexes. PhD Thesis, University of Glasgow, UK; 2021.
[41] ML Morris, RW Moshier, RE Sievers, Inorg Chem 1963, 2, 411.
| Crossref | GoogleScholarGoogle Scholar |
[42] M Westerhausen, M Hartmann, A Pfitzner, W Schwarz, Z fur Anorg Allg Chem 1995, 621, 837.
| Crossref | GoogleScholarGoogle Scholar |
[43] DH Woen, GP Chen, JW Ziller, TJ Boyle, F Furche, WJ Evans, Angew Chem, Int Ed 2017, 56, 2050.
| Crossref | GoogleScholarGoogle Scholar |
[44] M Niemeyer, Z fur Anorg Allg Chem 2002, 628, 647.
| Crossref | GoogleScholarGoogle Scholar |
[45] KH Den Haan, JL De Boer, JH Teuben, AL Spek, B Kojic-Prodic, GR Hays, R Huis, Organometallics 1986, 5, 1726.
| Crossref | GoogleScholarGoogle Scholar |
[46] SE Lorenz, BM Schmiege, DS Lee, JW Ziller, WJ Evans, Inorg Chem 2010, 49, 6655.
| Crossref | GoogleScholarGoogle Scholar | 20545319PubMed |
[47] H Schumann, ECE Rosenthal, G Kociok-Köhn, GA Molander, J Winterfeld, J Organomet Chem 1995, 496, 233.
| Crossref | GoogleScholarGoogle Scholar |
[48] F Han, B Li, Y Zhang, Y Wang, Q Shen, Organometallics 2010, 29, 3467.
| Crossref | GoogleScholarGoogle Scholar |
[49] C Zhang, R Liu, J Zhang, Z Chen, X Zhou, Inorg Chem 2006, 45, 5867.
| Crossref | GoogleScholarGoogle Scholar | 16841991PubMed |
[50] WJ Evans, MA Hozbor, SG Bott, GH Robinson, JL Atwood, Inorg Chem 1988, 27, 1990.
| Crossref | GoogleScholarGoogle Scholar |
[51] RG Lawrence, CJ Jones, RA Kresinski, Polyhedron 1996, 15, 2011.
| Crossref | GoogleScholarGoogle Scholar |
[52] H Schumann, FH Gӧrlitz, FE Hahn, J Pickardt, C Qian, Z Xie, Z fur Anorg Allg Chem 1992, 609, 131.
| Crossref | GoogleScholarGoogle Scholar |
[53] MP Coles, PB Hitchcock, MF Lappert, AV Protchenko, Organometallics 2012, 31, 2682.
| Crossref | GoogleScholarGoogle Scholar |
[54] SA Moehring, MJ Beltrán‐Leiva, D Páez‐Hernández, R Arratia‐Pérez, JW Ziller, WJ Evans, Chem - Eur J 2018, 24, 18059.
| Crossref | GoogleScholarGoogle Scholar | 30199585PubMed |
[55] MF Haddow, RJ Newland, BE Tegner, SM Mansell, CrystEngComm 2019, 21, 2884.
| Crossref | GoogleScholarGoogle Scholar |
[56] GB Deacon, TC Feng, S Nickel, MI Ogden, AH White, Aust J Chem 1992, 45, 671.
| Crossref | GoogleScholarGoogle Scholar |
[57] JR Van Den Hende, PB Hitchcock, SA Holmes, MF Lappert, J Chem Soc, Dalton Trans 1995, 1435.
| Crossref | GoogleScholarGoogle Scholar |
[58] KB Aubrecht, K Chang, MA Hillmyer, WB Tolman, J Polym Sci, Polym Chem 2001, 39, 284.
| Crossref | GoogleScholarGoogle Scholar |
[59] Q Xia, Y Cui, D Yuan, Y Wang, Y Yao, J Organomet Chem 2017, 846, 161.
| Crossref | GoogleScholarGoogle Scholar |
[60] Y Yao, Q Shen, J Sun, Polyhedron 1998, 17, 519.
| Crossref | GoogleScholarGoogle Scholar |
[61] F Yuan, J Yang, L Xiong, J Organomet Chem 2006, 691, 2534.
| Crossref | GoogleScholarGoogle Scholar |