Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Charge-transfer complexes of arylthiotetrathiafulvalenes and TCNQF4: their structural diversity and electronic states

Longfei Ma https://orcid.org/0000-0003-0444-2159 A * and Congjie Pan https://orcid.org/0000-0002-4896-7195 B
+ Author Affiliations
- Author Affiliations

A Department of Criminal Science and Technology, Henan Police College, Zhengzhou, 450046, P. R. China.

B School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China.

* Correspondence to: malongfei@hnp.edu.cn

Handling Editor: Stuart Batten

Australian Journal of Chemistry 75(3) 174-180 https://doi.org/10.1071/CH21202
Submitted: 16 August 2021  Accepted: 17 November 2021   Published: 11 January 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

A series of charge-transfer (CT) complexes have been prepared via diffusion and evaporation methods comprising arylthio-substituted tetrathiafulvalene (Ar-S-TTF) derivatives 15 and TCNQF4. Crystallographic studies revealed the diverse crystal packing of the CT complexes, which is related to their flexible structure and the planar central cores of the Ar-S-TTF. The complexes could be divided into three systems according to the packing similarities and dissimilarities of Ar-S-TTF (donor, D) and TCNQF4 (acceptor, A), namely Class 1 (D on D and A on A segregated stacking), Class 2 ((–A–D–)n mixed stacking) and Class 3 (–D–D–D–D– and A, A stacks with each other in edge-to-face interactions between cations and anions). The presence of multiple intermolecular interactions promotes the formation of various stacking structures. There are two factors affecting the packing structures and compositions of the CT complexes: (1) the aryl groups thereon of Ar-S-TTF; and (2) the expanded π-conjugated system.

Keywords: arylthio-substituted tetrathiafulvalene, charge transfer, crystal packing, electrochemistry, electron donors, organic conductor, self-assembly, TCNQF4.


References

[1]  F Wudl, GM Smith, EJ Hufnagel, J Chem Soc D 1970, 1453.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Yamada J, Sugimoto T, editors. TTF chemistry fundamentals and applications of tetrathiafulvalene. Berlin, Germany: Kodansha Springer; 2004.

[3]  EM Engler, VV Patel, J Am Soc Chem 1974, 96, 7376.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A Andrieux, C Duroure, D Jérome, K Bechgaard, J Phys Lett 1979, 40, 381.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  SG Bishop, DJ Robbins, PJ Dean, Solid State Commun 1980, 33, 119.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K Bechgaard, K Carneiro, FB Rasmussen, M Olsen, G Rindorf, CS Jacobsen, HJ Pedersen, JC Scott, J Am Chem Soc 1981, 103, 2440.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  U Geiser, JA Schlueter, HH Wang, AM Kini, JM Williams, PP Sche, HI Zakowicz, ML VanZile, JD Dudek, PG Nixon, RW Winter, GL Gard, J Ren, MH Whangbo, J Am Chem Soc 1996, 118, 9996.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Yamada J, Sugimoto T, editors. TTF chemistry: fundamentals and applications of tetrahiafulvalenes. Tokyo: Kodansha; 2004.

[9]  C Wang, SM Dyar, D Cao, AC Fahrenbach, N Horwitz, MT Colvin, R Carmieli, CL Stern, SK Dey, MR Wasielewski, JF Stoddart, J Am Chem Soc 2012, 134, 19136.
         | Crossref | GoogleScholarGoogle Scholar | 23140138PubMed |

[10]  A Izuoka, T Tachikawa, T Sugawara, Y Suzuki, M Konno, Y Saito, H Shinohara, J Am Chem Soc 1992, 1472.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H Xue, X-J Tang, L-Z Wu, L-P Zhang, C-H Tung, J Org Chem 2005, 70, 9727.
         | Crossref | GoogleScholarGoogle Scholar | 16292800PubMed |

[12]  X Xiao, Y He, G Wang, L Shen, Y Guo, J Fang, J Yang, Heter Chem 2013, 24, 72.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J Sun, X Lu, M Ishikawa, Y Nakano, S Zhang, J Zhao, Y Shao, Z Wang, H Yamochi, X Shao, J Mater Chem C 2014, 2, 8071.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  X Lu, J Sun, S Zhang, L Ma, L Liu, H Qi, Y Shao, X Shao, Beilstein J Org Chem 2015, 11, 1043.
         | Crossref | GoogleScholarGoogle Scholar | 26199659PubMed |

[15]  J Ferraris, DO Cowan, V Walatka, JH Perlstein, J Am Chem Soc 1973, 95, 948.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Y Takahashi, T Hasegawa, Y Abe, Y Tokura, G Saito, Appl Phys Lett 2006, 88, 073504.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E Laukhina, R Pfattner, LR Ferreras, S Galli, M Mas-Torrent, N Masciocchi, V Laukhin, C Rovira, J Veciana, Adv Mater 2010, 22, 977.
         | Crossref | GoogleScholarGoogle Scholar | 20217823PubMed |

[18]  KP Goetz, D Vermeulen, ME Payne, C Kloc, LE McNeil, OD Jurchescu, J Mater Chem C 2014, 2, 3065.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R Pfattner, C Rovira, M Mas-Torrent, Phys Chem Chem Phys 2015, 17, 26545.
         | Crossref | GoogleScholarGoogle Scholar | 25204256PubMed |

[20]  R Haddon, Aust J Chem 1975, 28, 2333.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J Zhang, W Xu, P Sheng, G Zhao, D Zhu, Acc Chem Res 2017, 50, 1654.
         | Crossref | GoogleScholarGoogle Scholar | 28608673PubMed |

[22]  M Mas-Torrent, C Rovira, J Mater Chem 2006, 16, 433.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Yamada J, Sugimoto T, editors. TTF chemistry fundamentals and applications of tetrathiafulvalene. Berlin, Germany: Kodansha Springer; 2004.

[24]  F Pop, N Avarvari, Chem Commun 2016, 52, 7906.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  O Drozdova, H Yamochi, K Yakushi, M Uruichi, S Horiuchi, G Saito, J Am Chem Soc 2000, 122, 436.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y Kiyota, I-R Jeon, O Jeannin, M Beau, T Kawamoto, P Alemany, E Canadell, T Mori, M Fourmigué, Phys Chem Chem Phys 2019, 21, 22639.
         | Crossref | GoogleScholarGoogle Scholar | 31592522PubMed |

[27]  A Gorgues, P Hudhomme, M Sallé, Chem Rev 2004, 104, 5151.
         | Crossref | GoogleScholarGoogle Scholar | 15535646PubMed |

[28]  MR Bryce, Chem Soc Rev 1991, 20, 355.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M Adam, K Müllen, Adv Mater 1994, 6, 439.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  T Jørgensen, TK Hansen, J Becher, Chem Soc Rev 1994, 23, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  MR Bryce, J Mater Chem 1995, 5, 1481.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J Garín, Adv Heterocycl Chem 1995, 62, 249.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  T Otsubo, Y Aso, K Takimiya, Adv Mater 1996, 8, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  E Coronado, CJ Gómez-García, Chem Rev 1998, 98, 273.
         | Crossref | GoogleScholarGoogle Scholar | 11851506PubMed |

[35]  MR Bryce, Adv Mater 1999, 11, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  MB Nielsen, C Lomholt, J Becher, Chem Soc Rev 2000, 29, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  JL Segura, N Martín, Angew Chem Int Ed 2001, 40, 1372.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  P Frère, PJ Skabara, Chem Soc Rev 2005, 34, 69.
         | Crossref | GoogleScholarGoogle Scholar | 15643491PubMed |

[39]  D Canevet, M Sallé, G Zhang, D Zhang, D Zhu, Chem Commun 2009, 2245.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  H Ding, Y Li, H Hu, Y Sun, J Wang, C Wang, C Wang, G Zhang, B Wang, W Xu, D Zhang, Chem–Eur J 2014, 20, 14614.
         | Crossref | GoogleScholarGoogle Scholar | 25266337PubMed |

[41]  T Salzillo, N Crivillers, M Mas-Torrent, K Wurst, J Veciana, C Rovira, Synth Met 2019, 247, 144.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  L Ma, J Sun, X Lu, S Zhang, H Qi, L Liu, Y Shao, X Shao, Beilstein J Org Chem 2015, 11, 850.
         | Crossref | GoogleScholarGoogle Scholar | 26124886PubMed |

[43]  L Ma, H Peng, X Lu, L Liu, X Shao, RSC Adv 2018, 8, 17321.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  L Ma, H Peng, X Lu, L Liu, X Shao, Chin J Chem 2018, 36, 845.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  J Sun, X Lu, J Shao, Z Cui, Y Shao, G Jiang, W Yu, X Shao, RSC Adv 2013, 3, 10193.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  J Sun, X Lu, J Shao, X Li, S Zhang, B Wang, J Zhao, Y Shao, R Fang, Z Wang, W Yu, X Shao, Chem–Eur J 2013, 19, 12517.
         | Crossref | GoogleScholarGoogle Scholar | 23918675PubMed |

[47]  S Zhang, X Lu, J Sun, Y Zhao, X Shao, CrystEngComm 2015, 17, 4110.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  H Méndez, G Heimel, S Winkler, J Frisch, A Opitz, K Sauer, B Wegner, M Oehzelt, C Röthel, S Duhm, D Többens, N Koch, I Salzmann, Nat Commun 2015, 6, 8560.
         | Crossref | GoogleScholarGoogle Scholar | 26440403PubMed |

[49]  L Ma, P Hu, H Jiang, C Kloc, H Sun, C Soci, AA Voityuk, ME Michel-Beyerle, GG Gurzadyan, Sci Rep 2016, 6, 28510.
         | Crossref | GoogleScholarGoogle Scholar | 27346797PubMed |

[50]  T Salzillo, N Crivillers, M Mas-Torrent, K Wurst, J Veciana, C Rovira, Synth Met 2019, 247, 144.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  Ishiguro T, Yamaji K, Saito G. Organic superconductors, 2nd edn, Berlin: Springer; 1998.

[52]  P Guionneau, CJ Kepert, G Bravic, D Chasseau, MR Truter, M Kurmoo, P Day, Synth Met 1997, 86, 1973.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  AL Sutton, BF Abrahams, DM D’Alessandro, RW Elliott, TA Hudson, R Robson, PM Usov, CrystEngComm 2014, 16, 5234.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  OJ Dautel, M Fourmigué, J Org Chem 2000, 65, 6479.
         | Crossref | GoogleScholarGoogle Scholar | 11052091PubMed |

[55]  TJ Emge, M Maxfield, DO Cowan, TJ Kistenmacher, Mol Cryst Liq Cryst 1981, 65, 161.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  JS Miller, JH Zhang, WM Reiff, Inorg Chem 1987, 26, 600.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  CS Bajgur, W Tikkanen, JL Petersen, Inorg Chem 1985, 24, 2539.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  Armarege WLF, Chai CLL. Purification of laboratory chemicals. 5th edn. Elsevier; 2003.

[59]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Cryst 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  GM Sheldrick. SHELXL-97, a program for crystal structure refinement. Göttingen, Germany: University of Göttingen; 1997.