Chiral Coordination Polymers of Mandelate and its Derivatives: Tuning Crystal Packing by Modulation of Hydrogen Bonding
Hui Min Tay A and Carol Hua A BA School of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Corresponding author. Email: carol.hua@unimelb.edu.au
Carol obtained her Bachelor of Advanced Science (First Class Honours and the University Medal in Chemistry) degree from the University of New South Wales in 2011, before completing her Ph.D. at the University of Sydney in 2016 for which she was awarded the RACI Cornforth Medal. Carol undertook two post-doctoral positions at the University of Limerick, Ireland, and Northwestern University, USA, supported by an American-Australian Association Fellowship and an Endeavour Research Fellowship, before starting her current position as a McKenzie Fellow at the University of Melbourne. Her current research interests include the development of coordination polymers as chiral sensors. |
Australian Journal of Chemistry 75(2) 94-101 https://doi.org/10.1071/CH21066
Submitted: 9 March 2021 Accepted: 5 June 2021 Published: 28 June 2021
Abstract
Chiral coordination polymers constructed from mandelic acid have shown promise in enantioselective recognition and sensing, whereas its methoxy-protected derivative, α-methoxyphenyl acetic acid, is rarely used as a ligand in coordination polymers. In this study, mandelic acid, 3,5-difluoromandelic acid, and α-methoxyphenyl acetic acid were combined with divalent transition metals and bridging dipyridyl co-ligands to obtain a series of six 1D coordination polymers. The coordination polymers of mandelate and 3,5-difluoromandelate possessed densely packed structures stabilised by hydrogen bonding. In contrast, the use of (R)-α-methoxyphenyl acetic acid gave rise to zig-zag chains with significant solvent-accessible void space.
Keywords: chirality, enantioselective recognition, metal-organic frameworks, coordination polymer, crystal engineering, hydrogen bonding, mandelic acid, chiral pool molecule, transition metal.
References
[1] X. Zhang, J. Yin, J. Yoon, Chem. Rev. 2014, 114, 4918.| Crossref | GoogleScholarGoogle Scholar | 24499128PubMed |
[2] P. Jadaud, I. W. Wainer, Chirality 1990, 2, 32.
| Crossref | GoogleScholarGoogle Scholar | 2400637PubMed |
[3] S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers. Design, Analysis and Application 2009 (RSC Publishing: Cambridge).
[4] Y. J. Cui, B. Li, H. J. He, W. Zhou, B. L. Chen, G. D. Qian, Acc. Chem. Res. 2016, 49, 483.
| Crossref | GoogleScholarGoogle Scholar |
[5] S. L. Qiu, G. S. Zhu, Coord. Chem. Rev. 2009, 253, 2891.
| Crossref | GoogleScholarGoogle Scholar |
[6] H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
| Crossref | GoogleScholarGoogle Scholar | 22280456PubMed |
[7] R.-G. Xiong, X.-Z. You, B. F. Abrahams, Z. Xue, C.-M. Che, Angew. Chem. Int. Ed. 2001, 40, 4422.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Tanaka, T. Muraoka, Y. Otubo, H. Takahashi, A. Ohnishi, RSC Adv. 2016, 6, 21293.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Zhuo, Y. Wen, S. Hu, T. Sheng, R. Fu, Z. Xue, H. Zhang, H. Li, J. Yuan, X. Chen, X. Wu, Inorg. Chem. 2017, 56, 6275.
| Crossref | GoogleScholarGoogle Scholar | 28537718PubMed |
[10] M. Padmanaban, P. Müller, C. Lieder, K. Gedrich, R. Grünker, V. Bon, I. Senkovska, S. Baumgärtner, S. Opelt, S. Paasch, E. Brunner, F. Glorius, E. Klemm, S. Kaskel, Chem. Commun. 2011, 47, 12089.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. M. Falkowski, T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard, W. Lin, J. Am. Chem. Soc. 2014, 136, 5213.
| Crossref | GoogleScholarGoogle Scholar | 24684238PubMed |
[12] L. Ma, J. M. Falkowski, C. Abney, W. Lin, Nat. Chem. 2010, 2, 838.
| Crossref | GoogleScholarGoogle Scholar | 20861899PubMed |
[13] K. D. Nguyen, C. Kutzscher, F. Drache, I. Senkovska, S. Kaskel, Inorg. Chem. 2018, 57, 1483.
| Crossref | GoogleScholarGoogle Scholar | 29364659PubMed |
[14] W. Xi, Y. Liu, Q. Xia, Z. Li, Y. Cui, Chem. – Eur. J. 2015, 21, 12581.
| Crossref | GoogleScholarGoogle Scholar | 26200925PubMed |
[15] X.-W. Dong, Y. Yang, J.-X. Che, J. Zuo, X.-H. Li, L. Gao, Y.-Z. Hu, X.-Y. Liu, Green Chem. 2018, 20, 4085.
| Crossref | GoogleScholarGoogle Scholar |
[16] Z. Han, W. Shi, P. Cheng, Chin. Chem. Lett. 2018, 29, 819.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. M. Tay, C. Hua, Cryst. Growth Des. 2020, 20, 5843.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Liu, W. Xuan, Y. Cui, Adv. Mater. 2010, 22, 4112.
| Crossref | GoogleScholarGoogle Scholar | 20799372PubMed |
[19] C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
| Crossref | GoogleScholarGoogle Scholar | 15969557PubMed |
[20] P. Grosshans, A. Jouaiti, V. Bulach, J.-M. Planeix, M. W. Hosseini, J.-F. Nicoud, Chem. Commun. 2003, 1336.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. A. Barron, S. Glazier, S. Bernhard, K. Takada, P. L. Houston, H. D. Abruña, Inorg. Chem. 2003, 42, 1448.
| Crossref | GoogleScholarGoogle Scholar | 12611509PubMed |
[22] R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky, Angew. Chem. Int. Ed. Engl. 2006, 45, 6495.
| Crossref | GoogleScholarGoogle Scholar | 16960821PubMed |
[23] B. Ugale, S. S. Dhankhar, C. M. Nagaraja, Inorg. Chem. Front. 2017, 4, 348.
| Crossref | GoogleScholarGoogle Scholar |
[24] Y. X. Tan, Y. P. He, J. Zhang, Inorg. Chem. 2011, 50, 11527.
| Crossref | GoogleScholarGoogle Scholar | 22017600PubMed |
[25] J. Yang, C. A. Trickett, S. B. Alahmadi, A. S. Alshammari, O. M. Yaghi, J. Am. Chem. Soc. 2017, 139, 8118.
| Crossref | GoogleScholarGoogle Scholar | 28578568PubMed |
[26] D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim, Angew. Chem. Int. Ed. 2006, 45, 916.
| Crossref | GoogleScholarGoogle Scholar |
[27] K. Suh, M. P. Yutkin, D. N. Dybtsev, V. P. Fedin, K. Kim, Chem. Commun. 2012, 48, 513.
| Crossref | GoogleScholarGoogle Scholar |
[28] X. Zhao, H. J. Yang, E. T. Nguyen, J. Padilla, X. T. Chen, P. Y. Feng, X. H. Bu, J. Am. Chem. Soc. 2018, 140, 13566.
| Crossref | GoogleScholarGoogle Scholar | 30351144PubMed |
[29] D. N. Dybtsev, M. P. Yutkin, E. V. Peresypkina, A. V. Virovets, C. Serre, G. Ferey, V. P. Fedin, Inorg. Chem. 2007, 46, 6843.
| Crossref | GoogleScholarGoogle Scholar | 17645331PubMed |
[30] J. A. Rood, B. C. Noll, K. W. Henderson, Main Group Chem. 2009, 8, 237.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. M. Tay, N. Kyratzis, S. Thoonen, S. A. Boer, D. R. Turner, C. Hua, Coord. Chem. Rev. 2021, 435, 213763.
| Crossref | GoogleScholarGoogle Scholar |
[32] C. Lamberth, F. Cederbaum, A. Jeanguenat, H.-J. Kempf, M. Zeller, R. Zeun, Pest Manag. Sci. 2006, 62, 446.
| Crossref | GoogleScholarGoogle Scholar | 16550505PubMed |
[33] D. N. Dybtsev, M. P. Yutkin, D. G. Samsonenko, V. P. Fedin, A. L. Nuzhdin, A. A. Bezrukov, K. P. Bryliakov, E. P. Talsi, R. V. Belosludov, H. Mizuseki, Y. Kawazoe, O. S. Subbotin, V. R. Belosludov, Chem. – Eur. J. 2010, 16, 10348.
| Crossref | GoogleScholarGoogle Scholar | 20730747PubMed |
[34] X. Li, Q. Feng, M. Liu, Q. Deng, Z. Jia, Y. Sun, X. Zuo, J. Shi, H.-H. Song, H.-T. Yu, Inorg. Chem. Commun. 2020, 112, 107730.
| Crossref | GoogleScholarGoogle Scholar |
[35] D. N. Dybtsev, M. P. Yutkin, D. G. Samsonenko, V. P. Fedin, A. L. Nuzhdin, A. A. Bezrukov, K. P. Bryliakov, E. P. Talsi, R. V. Belosludov, H. Mizuseki, Y. Kawazoe, O. S. Subbotin, V. R. Belosludov, Chem. – Eur. J. 2010, 16, 10348.
| Crossref | GoogleScholarGoogle Scholar | 20730747PubMed |
[36] S. Y. Zhang, C. X. Yang, W. Shi, X. P. Yan, P. Cheng, L. Wojtas, M. J. Zaworotko, Chem 2017, 3, 281.
| Crossref | GoogleScholarGoogle Scholar |
[37] S. Y. Zhang, L. Wojtas, M. J. Zaworotko, J. Am. Chem. Soc. 2015, 137, 12045.
| Crossref | GoogleScholarGoogle Scholar | 26343355PubMed |
[38] A. Beghidja, G. Rogez, P. Rabu, R. Welter, M. Drillon, J. Mater. Chem. 2006, 16, 2715.
| Crossref | GoogleScholarGoogle Scholar |
[39] J. L. Qi, S. L. Ni, W. Xu, J. Y. Qian, Y. Q. Zheng, J. Inorg. Organomet. Polym. 2014, 24, 600.
| Crossref | GoogleScholarGoogle Scholar |
[40] F. M. D. Ismail, J. Fluor. Chem. 2002, 118, 27.
| Crossref | GoogleScholarGoogle Scholar |
[41] S. Li, C. Cui, M.-Y. Wang, S.-J. Yu, Y.-X. Shi, X. Zhang, Z.-M. Li, W.-G. Zhao, B.-J. Li, J. Fluor. Chem. 2012, 137, 108.
| Crossref | GoogleScholarGoogle Scholar |
[42] A. Kumari, K. Dorai, J. Phys. Chem. A 2011, 115, 6543.
| Crossref | GoogleScholarGoogle Scholar | 21598917PubMed |
[43] M. Llunell, D. Casanova, J. Cicera, P. Alemany, S. Alvarez, SHAPE 2.1 ed. 2013 (Barcelona, Spain).
[44] T. J. Mooibroek, P. Gamez, J. Reedijk, CrystEngComm 2008, 10, 1501.
| Crossref | GoogleScholarGoogle Scholar |
[45] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. B 2016, 72, 171.
| Crossref | GoogleScholarGoogle Scholar |
[46] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |
[47] D. Aragao, J. Aishima, H. Cherukuvada, R. Clarken, M. Clift, N. P. Cowieson, D. J. Ericsson, C. L. Gee, S. Macedo, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Rostan, R. Williamson, T. T. Caradoc-Davies, J. Synchrotron Radiat. 2018, 25, 885.
| Crossref | GoogleScholarGoogle Scholar | 29714201PubMed |
[48] G. Sheldrick, Acta Crystallogr. A 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[49] G. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[50] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |