Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aligned Carbon Nanotube Films for Immobilization of Glucose Oxidase and its Application in Glucose Biosensor

Chunbo Jiang A , Lianxi Zheng B C D and Yang Liu https://orcid.org/0000-0003-2085-5148 A D
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

B Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.

C School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.

D Corresponding authors. Email: lianxi.zheng@ku.ac.ae; yang.liu11@jcu.edu.au




Yang Liu obtained her Ph.D. from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2011. Following this, she held post-doctoral positions at Nanyang Technological University, Singapore (2011–2013) and Curtin University, Australia (2013–2016). From 2016 to 2018, she worked as a chemist and research officer at ChemCentre, Western Australian Government. In 2018, she was appointed as Lecturer in Chemistry at James Cook University to commence her independent academic career. Her current research interests are primarily in the exploration of innovative analytical technologies for environmental and biological applications, including development of nanomaterials for label-free sensor devices and analytical utility of electrochemistry at nanoscale interfaces.

Australian Journal of Chemistry 75(2) 89-93 https://doi.org/10.1071/CH21075
Submitted: 23 March 2021  Accepted: 13 May 2021   Published: 10 June 2021

Abstract

Glucose oxidase (GOx) was immobilized between aligned carbon nanotube films (ACNTFs) using a cross-stacking method without any purification and functionalization processes. Direct electron transfer of GOx was achieved on the ACNTFs with reversible redox peaks observed at the formal potential of –0.448 V. When applied to the determination of glucose by cyclic voltammetry, the prepared enzymatic electrode exhibited a linear range from 1 to 5 mM under mediator-free physiological conditions, which makes it a promising candidate for the development of third-generation glucose biosensors.

Keywords: carbon, nanotubes, films, electrochemistry, electroanalytical chemistry, glucose, enzyme immobilization, direct electron transfer, biosensor.


References

[1]  A. Gahlaut, V. Hooda, A. Gothwal, V. Hooda, Crit. Rev. Anal. Chem. 2019, 49, 32.
         | Crossref | GoogleScholarGoogle Scholar | 29757672PubMed |

[2]  S. Kurbanoglu, C. Erkmen, B. Uslu, Trends Analyt. Chem. 2020, 124, 115809.

[3]  C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, et al. Curr. Opin. Electrochem. 2019, 17, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  L. C. Clark, C. Lyons, Ann. N. Y. Acad. Sci. 1962, 102, 29.
         | Crossref | GoogleScholarGoogle Scholar | 14021529PubMed |

[5]  B. Dinesh, K. S. Shalini Devi, U. M. Krishnan, ACS Appl. Bio Mater. 2019, 2, 1740.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. Liu, H. Teng, H. Hou, T. You, Biosens. Bioelectron. 2009, 24, 3329.
         | Crossref | GoogleScholarGoogle Scholar | 19450966PubMed |

[7]  Y. Liu, Y. Dong, C. X. Guo, Z. Cui, L. Zheng, C. M. Li, Electroanalysis 2012, 24, 2348.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Z. Tao, R. A. Raffel, A. K. Souid, J. Goodisman, Biophys. J. 2009, 96, 2977.
         | Crossref | GoogleScholarGoogle Scholar | 19348778PubMed |

[9]  J. Wang, Electroanalysis 2001, 13, 983.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  I. Lee, N. Loew, W. Tsugawa, K. Ikebukuro, K. Sode, Biosens. Bioelectron. 2019, 124–125, 216.
         | Crossref | GoogleScholarGoogle Scholar | 30388564PubMed |

[11]  P. Rafighi, M. Tavahodi, B. Haghighi, Sens. Actuators B Chem. 2016, 232, 454.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. Liu, Y. Du, C. M. Li, Electroanalysis 2013, 25, 815.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin, S. Cosnier, Nat. Commun. 2011, 2, 370.
         | Crossref | GoogleScholarGoogle Scholar | 21712818PubMed |

[14]  H. Uk Lee, H. Young Yoo, T. Lkhagvasuren, Y. Seok Song, C. Park, J. Kim, et al. Biosens. Bioelectron. 2013, 42, 342.
         | Crossref | GoogleScholarGoogle Scholar | 23228492PubMed |

[15]  A. Zebda, S. Tingry, C. Innocent, S. Cosnier, C. Forano, C. Mousty, Electrochim. Acta 2011, 56, 10378.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  H. Susanto, A. M. Samsudin, N. Rokhati, I. N. Widiasa, Enzyme Microb. Technol. 2013, 52, 386.
         | Crossref | GoogleScholarGoogle Scholar | 23608508PubMed |

[17]  T. Garcia-Perez, S. G. Hong, J. Kim, S. Ha, Enzyme Microb. Technol. 2016, 90, 26.
         | Crossref | GoogleScholarGoogle Scholar | 27241289PubMed |

[18]  Y. Chung, Y. Ahn, M. Christwardana, H. Kim, Y. Kwon, Nanoscale 2016, 8, 9201.
         | Crossref | GoogleScholarGoogle Scholar | 27074999PubMed |

[19]  N. B. Duong, V. M. Truong, Y.-S. Li, C.-L. Wang, H. Yang, Energy Fuels 2020, 34, 10050.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  P. N. Barlett, J. M. Cooper, J. Electroanal. Chem. (Lausanne) 1993, 362, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Sampath, O. Lev, Adv. Mater. 1997, 9, 410.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. Chen, R. Zhu, J. Huang, M. Zhang, H. Liu, M. Sun, et al. Analyst (Lond.) 2015, 140, 5578.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  N. Wang, M. Wen, Q. Wu, Colloids Surf. B Biointerfaces 2013, 111, 726.
         | Crossref | GoogleScholarGoogle Scholar | 23911742PubMed |

[24]  J. Liu, C. Guo, C. M. Li, Y. Li, Q. Chi, X. Huang, et al. Electrochem. Commun. 2009, 11, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. Zhao, X. Liu, J. Zhang, J. Zhu, D. K. Y. Wong, Electrochim. Acta 2015, 163, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  F. Gutierrez, M. D. Rubianes, G. A. Rivas, Sens. Actuators B Chem. 2012, 161, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  C. Cai, J. Chen, Anal. Biochem. 2004, 332, 75.
         | Crossref | GoogleScholarGoogle Scholar | 15301951PubMed |

[28]  A. Guiseppi-Elie, C. Lei, R. H. Baughman, Nanotechnology 2002, 13, 559.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. K. Shrestha, R. Ahmad, H. M. Mousa, I. G. Kim, J. I. Kim, M. P. Neupane, et al. J. Colloid Interface Sci. 2016, 482, 39.
         | Crossref | GoogleScholarGoogle Scholar | 27485503PubMed |

[30]  S. Gupta, C. R. Prabha, C. N. Murthy, J. Environ. Chem. Eng. 2016, 4, 3734.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. Pumera, H. Iwai, J. Phys. Chem. C 2009, 113, 4401.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  A. Ambrosi, M. Pumera, Chemistry 2010, 16, 10946.
         | Crossref | GoogleScholarGoogle Scholar | 20715215PubMed |

[33]  E. J. Stuart, M. Pumera, Chem. Asian J. 2011, 6, 804.
         | Crossref | GoogleScholarGoogle Scholar | 21344655PubMed |

[34]  E. J. E. Stuart, M. Pumera, J. Phys. Chem. C 2011, 115, 5530.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  C. Batchelor-McAuley, G. G. Wildgoose, R. G. Compton, L. Shao, M. L. H. Green, Sens. Actuators B Chem. 2008, 132, 356.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L. Siegert, D. K. Kampouris, J. Kruusma, V. Sammelselg, C. E. Banks, Electroanalysis 2009, 21, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. Pumera, Langmuir 2007, 23, 6453.
         | Crossref | GoogleScholarGoogle Scholar | 17455966PubMed |

[38]  K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater. 2011, 23, 1154.
         | Crossref | GoogleScholarGoogle Scholar | 21465707PubMed |

[39]  K. Liu, K. Jiang, C. Feng, Z. Chen, S. Fan, Carbon 2005, 43, 2850.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, et al. Adv. Mater. 2006, 18, 1505.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. L. Pint, N. Nicholas, J. G. Duque, A. N. G. Parra-Vasquez, M. Pasquali, R. Hauge, Chem. Mater. 2009, 21, 1550.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano Lett. 2001, 1, 87.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, S. S. Fan, Adv. Mater. 2009, 21, 2299.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  J. Li, Y. Liu, X. Tang, L. Xu, L. Min, Y. Xue, et al. Microchim. Acta 2020, 187, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  D. Zhang, X. Chen, W. Ma, T. Yang, D. Li, B. Dai, et al. Mater. Sci. Eng. C 2019, 104, 109880.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  Z. Temoçin, J. Appl. Electrochem. 2021, 51, 283.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  Z. Li, C. Xie, J. Wang, A. Meng, F. Zhang, Sens. Actuators B Chem. 2015, 208, 505.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  S. Liu, H. Ju, Biosens. Bioelectron. 2003, 19, 177.
         | Crossref | GoogleScholarGoogle Scholar | 14611752PubMed |

[49]  L. Zheng, G. Sun, Z. Zhan, Small 2010, 6, 132.
         | Crossref | GoogleScholarGoogle Scholar | 19902432PubMed |

[50]  Y. Liu, G. Sun, C. Jiang, X. T. Zheng, L. Zheng, C. M. Li, Microchim. Acta 2014, 181, 63.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  J. Di, D. Hu, H. Chen, Z. Yong, M. Chen, Z. Feng, et al. ACS Nano 2012, 6, 5457.
         | Crossref | GoogleScholarGoogle Scholar | 22591354PubMed |