Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Gold Catalysed 1,4-Enyne Acetate Strategy for the Synthesis of 1H-Indenes and Partially Hydrogenated Methanonaphtho[1,2-c]furan-1,3(4H)-diones*

Xiaoyu Chen A C , Andrew Thomas Holm A C and Philip Wai Hong Chan https://orcid.org/0000-0002-8786-6143 A B D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

C These authors contributed equally to this work.

D Corresponding author. Email: phil.chan@monash.edu

Australian Journal of Chemistry 73(12) 1165-1175 https://doi.org/10.1071/CH20175
Submitted: 31 May 2020  Accepted: 6 July 2020   Published: 13 August 2020

Abstract

A synthetic method to prepare 1H-indenes and partially hydrogenated methanonaphtho[1,2-c]furan-1,3(4H)-diones from gold(i)-catalysed 1,4-enyne acetate cycloisomerisation and oxidation or Diels–Alder reaction with maleic anhydride is described. The proposed mechanism involves Rautenstrauch rearrangement of the 1,4-enyne motif to give an in situ formed 1,3-cyclopentadiene intermediate. This is followed by 6-endo-dig cyclisation of the cyclic adduct and oxidation to give the aromatic carbocycle or Diels–Alder reaction with maleic anhydride to afford the bridged furan product.


References

[1]  Selected reviews on gold catalysis, see refs [2–11].

[2]  F. Gagosz, Synthesis 2019, 1087.

[3]  K. Holzschneider, S. F. Kirsch, Isr. J. Chem. 2018, 58, 596.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Y. Wei, M. Shi, ACS Catal. 2016, 6, 2515.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331.
         | Crossref | GoogleScholarGoogle Scholar | 26673389PubMed |

[6]  R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
         | Crossref | GoogleScholarGoogle Scholar | 25844920PubMed |

[7]  Gold Catalysis: A Homogeneous Approach (Eds F. D. Toste, V. Michelet) 2014 (Imperial College Press: London).

[8]  A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Modern Gold Catalyzed Synthesis (Eds A. S. K. Hashmi, F. D. Toste) 2012 (Wiley-VCH: Weinheim).

[10]  F. Miege, C. Meyer, J. Cossy, Beilstein J. Org. Chem. 2011, 7, 717.
         | Crossref | GoogleScholarGoogle Scholar | 21804867PubMed |

[11]  A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208.
         | Crossref | GoogleScholarGoogle Scholar | 19847352PubMed |

[12]  Selected reviews on gold-catalysed cyclisation of propargyl esters, see refs [13–19].

[13]  J. W. Boyle, Y. Zhao, P. W. H. Chan, Synthesis 2018, 1402.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471.
         | Crossref | GoogleScholarGoogle Scholar | 27385433PubMed |

[15]  D. P. Day, P. W. H. Chan, Adv. Synth. Catal. 2016, 358, 1368.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953.
         | Crossref | GoogleScholarGoogle Scholar | 24564512PubMed |

[17]  B. J. Ayers, P. W. H. Chan, Synlett 2015, 1305.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326.
         | Crossref | GoogleScholarGoogle Scholar | 18636778PubMed |

[20]  X. Chen, C. A. Baratay, M. E. Mark, X. Xu, P. W. H. Chan, Org. Lett. 2020, 22, 2849.
         | Crossref | GoogleScholarGoogle Scholar | 32212711PubMed |

[21]  M. Mathiew, J. K. Tan, P. W. H. Chan, Angew. Chem. Int. Ed. 2018, 57, 14235.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  X. Chen, D. P. Day, W. T. Teo, P. W. H. Chan, Org. Lett. 2016, 18, 5936.
         | Crossref | GoogleScholarGoogle Scholar | 27791382PubMed |

[23]  C. Bürki, A. Whyte, S. Arndt, A. S. K. Hashmi, M. Lautens, Org. Lett. 2016, 18, 5058.
         | Crossref | GoogleScholarGoogle Scholar | 27661092PubMed |

[24]  D. Susanti, L. J. Liu, W. Rao, S. Lin, D.-L. Ma, C.-H. Leung, P. W. H. Chan, Chem. – Eur. J. 2015, 21, 9111.
         | Crossref | GoogleScholarGoogle Scholar | 25982956PubMed |

[25]  X. Shi, D. J. Gorin, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802.
         | Crossref | GoogleScholarGoogle Scholar | 15839674PubMed |

[26]  O. N. Faza, C. S. Loṕez, R. Álvarez, A. R. de Lera, J. Am. Chem. Soc. 2006, 128, 2434.
         | Crossref | GoogleScholarGoogle Scholar | 16478199PubMed |

[27]  Selected recent examples of gold-catalysed carbocyclic synthesis, see refs [21–23], [25] and [28–39].

[28]  P. T. Bohan, F. D. Toste, J. Am. Chem. Soc. 2017, 139, 11016.
         | Crossref | GoogleScholarGoogle Scholar | 28771334PubMed |

[29]  S. K. Thummanapelli, S. Hosseyni, Y. Su, N. G. Akhmedov, X. Shi, Chem. Commun. 2016, 52, 7687.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  W. Rao, J. W. Boyle, P. W. H. Chan, Chem. – Eur. J. 2016, 22, 6532.
         | Crossref | GoogleScholarGoogle Scholar | 26945940PubMed |

[31]  E. Rettenmeier, M. M. Hansmann, A. Ahrens, K. Rubenacker, T. Saboo, J. Massholder, C. Meier, M. Rudolph, F. Rominger, A. S. Hashmi, Chem. – Eur. J. 2015, 21, 14401.
         | Crossref | GoogleScholarGoogle Scholar | 26291466PubMed |

[32]  W. Rao, D. Susanti, B. J. Ayers, P. W. H. Chan, J. Am. Chem. Soc. 2015, 137, 6350.
         | Crossref | GoogleScholarGoogle Scholar | 25905645PubMed |

[33]  J. Yan, G. L. Tay, C. Neo, B. R. Lee, P. W. H. Chan, Org. Lett. 2015, 17, 4176.
         | Crossref | GoogleScholarGoogle Scholar | 26291118PubMed |

[34]  W. Zi, H. Wu, F. D. Toste, J. Am. Chem. Soc. 2015, 137, 3225.
         | Crossref | GoogleScholarGoogle Scholar | 25710515PubMed |

[35]  D. Li, W. Rao, G. L. Tay, B. J. Ayers, P. W. H. Chan, J. Org. Chem. 2014, 79, 11301.
         | Crossref | GoogleScholarGoogle Scholar | 25263810PubMed |

[36]  W. Rao, M. J. Koh, D. Li, H. Hirao, P. W. H. Chan, J. Am. Chem. Soc. 2013, 135, 7926.
         | Crossref | GoogleScholarGoogle Scholar | 23627597PubMed |

[37]  W. Rao, Sally, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183.
         | Crossref | GoogleScholarGoogle Scholar | 23458312PubMed |

[38]  T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  D. Lebœuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  Selected examples of gold-catalysed heterocyclic synthesis, see refs [20], [24], [29], [33] and [41–60].

[41]  X. Cheng, Z. Wang, C. D. Quintanilla, L. Zhang, J. Am. Chem. Soc. 2019, 141, 3787.
         | Crossref | GoogleScholarGoogle Scholar | 30789268PubMed |

[42]  M. Bao, X. Wang, L. Qiu, W. Hu, P. W. H. Chan, X. Xu, Org. Lett. 2019, 21, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 30840467PubMed |

[43]  Y. Zhao, J. Jin, P. W. H. Chan, Adv. Synth. Catal. 2019, 361, 1313.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  D. Allegue, J. González, S. Fernández, J. Santamaría, A. Ballesteros, Adv. Synth. Catal. 2019, 361, 758.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  M. E. Muratore, A. I. Konovalov, H. Armengol-Relats, A. M. Echavarren, Chem. – Eur. J. 2018, 24, 15613.
         | Crossref | GoogleScholarGoogle Scholar | 30066978PubMed |

[46]  J. Zhao, W. Xu, X. Xie, N. Sun, X. Li, Y. Liu, Org. Lett. 2018, 20, 5461.
         | Crossref | GoogleScholarGoogle Scholar | 30102048PubMed |

[47]  J. Jin, Y. Zhao, E. M. L. Sze, P. Kothandaraman, P. W. H. Chan, Adv. Synth. Catal. 2018, 360, 4744.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun. 2018, 54, 2114.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  X. Chen, J. T. Merrett, P. W. H. Chan, Org. Lett. 2018, 20, 1542.
         | Crossref | GoogleScholarGoogle Scholar | 29481090PubMed |

[50]  B. Zhang, T. Wang, Z. Zhang, J. Org. Chem. 2017, 82, 11644.
         | Crossref | GoogleScholarGoogle Scholar | 28967246PubMed |

[51]  P. Kothandaraman, Y. Zhao, B. R. Lee, C. J. L. Ng, J. Y. Lee, B. J. Ayers, P. W. H. Chan, Adv. Synth. Catal. 2016, 358, 1385.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  W. Rao, Sally, S. N. Berry, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 13174.
         | Crossref | GoogleScholarGoogle Scholar | 25113644PubMed |

[53]  W. Rao, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 713.
         | Crossref | GoogleScholarGoogle Scholar | 24323953PubMed |

[54]  W. T. Teo, W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 7508.
         | Crossref | GoogleScholarGoogle Scholar | 23883133PubMed |

[55]  C. Gronnier, G. Boissonnat, F. Gagosz, Org. Lett. 2013, 15, 4234.
         | Crossref | GoogleScholarGoogle Scholar | 23909764PubMed |

[56]  W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811.
         | Crossref | GoogleScholarGoogle Scholar | 22663059PubMed |

[57]  P. C. Young, M. S. Hadfield, L. Arrowsmith, K. M. Macleod, R. J. Mudd, J. A. Jordan-Hore, A.-L. Lee, Org. Lett. 2012, 14, 898.
         | Crossref | GoogleScholarGoogle Scholar | 22272604PubMed |

[58]  P. Kothandaraman, W. Rao, S. J. Foo, P. W. H. Chan, Angew. Chem. Int. Ed. 2010, 49, 4619.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats, W. Frey, Chem. – Eur. J. 2008, 14, 3703.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  A. S. K. Hashmi, M. Wölfle, F. Ata, M. Hamzic, R. Salathé, W. Frey, Adv. Synth. Catal. 2006, 348, 2501.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  V. Rautenstrauch, J. Org. Chem. 1984, 49, 950.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  Compound 9a was found to decompose after 15 min, which prevented HRMS measurements from being performed.