Dendronised Polymers as Templates for In Situ Quantum Dot Synthesis
Alaa M. Munshi A B , Jessica A. Kretzmann A , Cameron W. Evans A , Anna M. Ranieri C , Zibeon Schildkraut A , Massimiliano Massi C , Marck Norret A , Martin Saunders D and K. Swaminathan Iyer A EA School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
B Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955, Mecca, Makkah Province, Saudi Arabia.
C Department of Chemistry and Nanochemistry Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia.
D Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
E Corresponding author. Email: swaminatha.iyer@uwa.edu.au
Australian Journal of Chemistry 73(7) 658-663 https://doi.org/10.1071/CH20071
Submitted: 3 March 2020 Accepted: 7 April 2020 Published: 16 June 2020
Abstract
The utility of dendrimers as effective carriers for targeted drug delivery and imaging has been facilitated by a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, and multivalency. Dendrimer–quantum dot (QD) nanocomposites have traditionally been synthesised by electrostatic self-assembly of preformed dendrimers and QDs, but higher generations are associated with limited flexibility and increased cytotoxicity. In this paper, we report the fabrication of CdTe QD nanoparticles using a dendronised linear copolymer bearing thiolated fourth-generation poly(amido amine) (PAMAM) dendrons as the capping and stabilising agent. We demonstrate this approach enables synthesis of nanocomposites with aqueous and photophysical stability.
References
[1] Z. Luo, Q. Qi, L. Zhang, R. Zeng, L. Su, D. Tang, Anal. Chem. 2019, 91, 4149.| Crossref | GoogleScholarGoogle Scholar | 30793581PubMed |
[2] Z. Yu, Y. Tang, G. Cai, R. Ren, D. Tang, Anal. Chem. 2019, 91, 1222.
| Crossref | GoogleScholarGoogle Scholar | 30569701PubMed |
[3] R. Zeng, Z. Luo, L. Su, L. Zhang, D. Tang, R. Niessner, D. Knopp, Anal. Chem. 2019, 91, 2447.
| Crossref | GoogleScholarGoogle Scholar | 30609356PubMed |
[4] W. C. Chan, S. Nie, Science 1998, 281, 2016.
| Crossref | GoogleScholarGoogle Scholar | 9748158PubMed |
[5] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998, 281, 2013.
| Crossref | GoogleScholarGoogle Scholar | 9748157PubMed |
[6] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol. 2003, 21, 41.
| Crossref | GoogleScholarGoogle Scholar | 12459735PubMed |
[7] W. R. Algar, A. J. Tavares, U. J. Krull, Anal. Chim. Acta 2010, 673, 1.
| Crossref | GoogleScholarGoogle Scholar | 20630173PubMed |
[8] S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, I. D. Tomlinson, Chem. Biol. 2011, 18, 10.
| Crossref | GoogleScholarGoogle Scholar | 21276935PubMed |
[9] K. Grieve, P. Mulvaney, F. Grieser, Curr. Opin. Colloid Interface Sci. 2000, 5, 168.
| Crossref | GoogleScholarGoogle Scholar |
[10] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
| Crossref | GoogleScholarGoogle Scholar | 15928695PubMed |
[11] P. Zrazhevskiy, M. Sena, X. Gao, Chem. Soc. Rev. 2010, 39, 4326.
| Crossref | GoogleScholarGoogle Scholar | 20697629PubMed |
[12] L. Zhang, Z. Luo, R. Zeng, Q. Zhou, D. Tang, Biosens. Bioelectron. 2019, 134, 1.
| Crossref | GoogleScholarGoogle Scholar | 30947036PubMed |
[13] G. Cai, Z. Yu, R. Ren, D. Tang, ACS Sens. 2018, 3, 632.
| Crossref | GoogleScholarGoogle Scholar | 29465232PubMed |
[14] Z. Luo, L. Zhang, R. Zeng, L. Su, D. Tang, Anal. Chem. 2018, 90, 9568.
| Crossref | GoogleScholarGoogle Scholar | 29938508PubMed |
[15] J. Shu, D. Tang, Chem. Asian J. 2017, 12, 2780.
| Crossref | GoogleScholarGoogle Scholar | 28880459PubMed |
[16] R. Freeman, I. Willner, Chem. Soc. Rev. 2012, 41, 4067.
| Crossref | GoogleScholarGoogle Scholar | 22481608PubMed |
[17] N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 2002, 106, 7177.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. Qian, C. Dong, J. Weng, J. Ren, Small 2006, 2, 747.
| Crossref | GoogleScholarGoogle Scholar | 17193117PubMed |
[19] S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, C. de Mello Donegá, Nano Lett. 2003, 3, 503.
| Crossref | GoogleScholarGoogle Scholar |
[20] N. Tomczak, D. Jańczewski, M. Han, G. J. Vancso, Prog. Polym. Sci. 2009, 34, 393.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11.
| Crossref | GoogleScholarGoogle Scholar | 28890669PubMed |
[22] S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466.
| Crossref | GoogleScholarGoogle Scholar | 13129327PubMed |
[23] L. Zhou, C. Gao, W. Xu, X. Wang, Y. Xu, Biomacromolecules 2009, 10, 1865.
| Crossref | GoogleScholarGoogle Scholar | 19496613PubMed |
[24] S.-W. Kim, S. Kim, J. B. Tracy, A. Jasanoff, M. G. Bawendi, J. Am. Chem. Soc. 2005, 127, 4556.
| Crossref | GoogleScholarGoogle Scholar | 15796504PubMed |
[25] D. A. Tomalia, A. M. Naylor, W. A. Goddard, Angew. Chem. Int. Ed. Engl. 1990, 29, 138.
| Crossref | GoogleScholarGoogle Scholar |
[26] B. Klajnert, M. Bryszewska, Acta Biochim. Pol. 2001, 48, 199.
| Crossref | GoogleScholarGoogle Scholar | 11440170PubMed |
[27] N. J. Wells, A. Basso, M. Bradley, Pept. Sci. 1998, 47, 381.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Zeng, C. Tang, G. Tian, P. Yi, H. Huang, N. Hu, S. Li, H. Huang, C. Li, B. Lin, X. Yu, Y. Ling, X. Xia, Chem. Eng. J. 2010, 156, 524.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 2010, 110, 1857.
| Crossref | GoogleScholarGoogle Scholar | 20356105PubMed |
[30] K. Esumi, H. Houdatsu, T. Yoshimura, Langmuir 2004, 20, 2536.
| Crossref | GoogleScholarGoogle Scholar | 15835119PubMed |
[31] S. H. Wang, X. Shi, M. Van Antwerp, Z. Cao, S. D. Swanson, X. Bi, J. R. Baker, Adv. Funct. Mater. 2007, 17, 3043.
| Crossref | GoogleScholarGoogle Scholar |
[32] Q. Li, J. Jin, F. Lou, D. Tang, Sci. China Chem. 2018, 61, 750.
| Crossref | GoogleScholarGoogle Scholar |
[33] D. Tang, L. Hou, R. Niessner, M. Xu, Z. Gao, D. Knopp, Biosens. Bioelectron. 2013, 46, 37.
| Crossref | GoogleScholarGoogle Scholar | 23500474PubMed |
[34] N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W. Weener, E. W. Meijer, W. Paulus, R. Duncan, J. Controlled Release 2000, 65, 133.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. A. Kretzmann, D. Ho, C. W. Evans, J. H. C. Plani-Lam, B. Garcia-Bloj, A. E. Mohamed, M. L. O’Mara, E. Ford, D. E. K. Tan, R. Lister, P. Blancafort, M. Norret, K. S. Iyer, Chem. Sci. 2017, 8, 2923.
| Crossref | GoogleScholarGoogle Scholar | 28451358PubMed |
[36] S. Ghosh, A. Saha, Nanoscale Res. Lett. 2009, 4, 937.
| Crossref | GoogleScholarGoogle Scholar | 20596492PubMed |
[37] Y. Shi, J. Wang, S. Li, Z. Wang, X. Zang, X. Zu, X. Zhang, F. Guo, G. Tong, J. Mater. Res. 2013, 28, 1940.
| Crossref | GoogleScholarGoogle Scholar |
[38] A. Priyam, S. Ghosh, S. C. Bhattacharya, A. Saha, J. Colloid Interface Sci. 2009, 333, 195.
| Crossref | GoogleScholarGoogle Scholar | 19233381PubMed |
[39] A. C. Wisher, I. Bronstein, V. Chechik, Chem. Commun. 2006, 1637.
| Crossref | GoogleScholarGoogle Scholar |
[40] J. Haensler, F. C. Szoka, Bioconjug. Chem. 1993, 4, 372.
| Crossref | GoogleScholarGoogle Scholar | 8274523PubMed |
[41] U. Lächelt, E. Wagner, Chem. Rev. 2015, 115, 11043.
| Crossref | GoogleScholarGoogle Scholar | 25872804PubMed |
[42] J. V. M. Weaver, I. Bannister, K. L. Robinson, X. Bories-Azeau, S. P. Armes, M. Smallridge, P. McKenna, Macromolecules 2004, 37, 2395.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Biomaterials 2005, 26, 4767.
| Crossref | GoogleScholarGoogle Scholar | 15763256PubMed |
[44] S. Connolly, S. N. Rao, D. Fitzmaurice, J. Phys. Chem. B 2000, 104, 4765.
| Crossref | GoogleScholarGoogle Scholar |
[45] S. F. Wuister, C. de Mello Donegá, A. Meijerink, J. Am. Chem. Soc. 2004, 126, 10397.
| Crossref | GoogleScholarGoogle Scholar | 15315455PubMed |
[46] W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2003, 15, 2854.
| Crossref | GoogleScholarGoogle Scholar |
[47] S. T. Malak, Y. J. Yoon, M. J. Smith, C. H. Lin, J. Jung, Z. Lin, V. V. Tsukruk, ACS Photonics 2017, 4, 1691.
| Crossref | GoogleScholarGoogle Scholar |
[48] N. F. Borrelli, D. W. Hall, H. J. Holland, D. W. Smith, J. Appl. Phys. 1987, 61, 5399.
| Crossref | GoogleScholarGoogle Scholar |
[49] Y. Masumoto, K. Sonobe, Phys. Rev. B Condens. Matter 1997, 56, 9734.
| Crossref | GoogleScholarGoogle Scholar |
[50] M. Algarra, B. B. Campos, M. S. Miranda, J. C. G. E. da Silva, Talanta 2011, 83, 1335.
| Crossref | GoogleScholarGoogle Scholar | 21238718PubMed |
[51] X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Nano Lett. 2003, 3, 1103.
| Crossref | GoogleScholarGoogle Scholar |