An Expeditious Route for the Synthesis of Oxazepine Triazolo-β-Lactams through Intramolecular Metal-Free [3 + 2] Azide–Alkyne Cycloaddition
Ram N. Yadav A B , Sunena Chandra B , Armando Paniagua B , Md. Firoj Hossain C and Bimal Krishna Banik B D EA Department of Chemistry, Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, Uttar Pradesh, India.
B Department of Chemistry, University of Texas-Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA.
C Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, West Bengal, India.
D Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia.
E Corresponding author. Email: bbanik@pmu.edu.sa
Australian Journal of Chemistry 73(7) 654-657 https://doi.org/10.1071/CH19670
Submitted: 20 January 2020 Accepted: 4 March 2020 Published: 6 May 2020
Abstract
A copper-free intramolecular azide–alkyne cycloaddition reaction of 4-hydroxymethyl-β-lactam with sodium azide has been described. The present approach involves the incorporation of an alkyne moiety through O-alkynylation of 3-hydroxy β-lactam with various propargylic halides. The generality of the method has been demonstrated by treating the corresponding tosylates or mesylates of the hydroxymethyl functionality of a variety of β-lactam-tethered terminal and internal alkynes with sodium azide in a one-pot three-step reaction to furnish novel oxazepane-β-lactam fused triazole scaffolds of diverse interest in good yield.
References
[1] R. Li, D. J. Jansen, A. Datta, Org. Biomol. Chem. 2009, 7, 1921.| Crossref | GoogleScholarGoogle Scholar | 19590789PubMed |
[2] D. Bhattacharya, A. Ghorai, U. Pal, N. Chandra Maiti, P. Chattopadhyay, RSC Adv. 2014, 4, 4155.
| Crossref | GoogleScholarGoogle Scholar |
[3] X. Wang, B. Huang, X. Liu, P. Zhan, Drug Discov. Today 2016, 21, 118.
| Crossref | GoogleScholarGoogle Scholar | 26315392PubMed |
[4] H. B. Jalani, A. Ç. Karagöz, S. B. Tsogoeva, Synthesis 2017, 49, 29.
| Crossref | GoogleScholarGoogle Scholar |
[5] W. Xi, T. F. Scott, C. J. Kloxin, C. N. Bowman, Adv. Funct. Mater. 2014, 24, 2572.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. C. Kolb, K. B. Sharpless, Drug Discov. Today 2003, 8, 1128.
| Crossref | GoogleScholarGoogle Scholar | 14678739PubMed |
[7] J. Hou, X. Liu, J. Shen, G. Zhao, P. G. Wang, Expert Opin. Drug Discov. 2012, 7, 489.
| Crossref | GoogleScholarGoogle Scholar | 22607210PubMed |
[8] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. D. Hein, X. M. Liu, D. Wang, Pharm. Res. 2008, 25, 2216.
| Crossref | GoogleScholarGoogle Scholar | 18509602PubMed |
[10] Z. Li, T. S. Seo, J. Ju, Tetrahedron Lett. 2004, 45, 3143.
| Crossref | GoogleScholarGoogle Scholar |
[11] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. K. Hussain, M. I. Ansari, R. Kant, K. Hajela, Org. Lett. 2014, 16, 560.
| Crossref | GoogleScholarGoogle Scholar | 24350729PubMed |
[13] J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302.
| Crossref | GoogleScholarGoogle Scholar | 20309487PubMed |
[14] P. Wu, V. V. Fokin, Aldrichim Acta 2007, 40, 7.
[15] W. Wang, X. Peng, F. Wei, C. H. Tung, Z. Xu, Angew. Chem. Int. Ed. 2016, 55, 649.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Wei, W. Wang, Y. Ma, C. H. Tung, Z. Xu, Chem. Commun. 2016, 52, 14188.
| Crossref | GoogleScholarGoogle Scholar |
[17] W. Wang, F. Wei, Y. Ma, C. H. Tung, Z. Xu, Org. Lett. 2016, 18, 4158.
| Crossref | GoogleScholarGoogle Scholar | 27549407PubMed |
[18] K. B. Mishra, V. K. Tiwari, J. Org. Chem. 2014, 79, 5752.
| Crossref | GoogleScholarGoogle Scholar | 24845771PubMed |
[19] A. S. Jadhav, Y. A. Pankhade, R. V. Anand, J. Org. Chem. 2018, 83, 8596.
| Crossref | GoogleScholarGoogle Scholar | 29790750PubMed |
[20] D. R. Wagle, C. Garai, J. Chiang, M. G. Monteleone, B. E. Kurys, T. W. Strohmeyer, V. R. Hegde, M. S. Manhas, A. K. Bose, J. Org. Chem. 1988, 53, 4227.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. K. Bose, M. S. Manhas, J. S. Chib, H. P. S. Chawla, B. Dayal, J. Org. Chem. 1974, 39, 2877.
| Crossref | GoogleScholarGoogle Scholar | 4415933PubMed |
[22] B. Alcaide, P. Almendros, C. Aragoncillo, Org. Lett. 2000, 2, 1411.
| Crossref | GoogleScholarGoogle Scholar | 10814460PubMed |
[23] J. F. Lutz, Angew. Chem. Int. Ed. 2008, 47, 2182.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. R. Becer, R. Hoogenboom, U. S. Schubert, Angew. Chem. Int. Ed. 2009, 48, 4900.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. V. Chang, J. A. Prescher, E. M. Sletten, J. M. Baskin, I. A. Miller, N. J. Agard, A. Lo, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2010, 107, 1821.
| Crossref | GoogleScholarGoogle Scholar | 20080615PubMed |
[26] B. C. Sanders, F. Friscourt, P. A. Ledin, N. E. Mbua, S. Arumugam, J. Guo, T. J. Boltje, V. V. Popik, G.-J. Boons, J. Am. Chem. Soc. 2011, 133, 949.
| Crossref | GoogleScholarGoogle Scholar | 21182329PubMed |
[27] S. V. Orski, A. A. Poloukhtine, S. Arumugam, L. Mao, V. V. Popik, J. Locklin, J. Am. Chem. Soc. 2010, 132, 11024.
| Crossref | GoogleScholarGoogle Scholar | 20698664PubMed |