Synthesis and Structural Characterisation of Lithium, Zinc, and Aluminium Pyrazolate Complexes*
Nazli E. Rad A , Peter C. Junk A D , Glen B. Deacon B , Ilya V. Taidakov C and Jun Wang AA College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C P. N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia.
D Corresponding author. Email: peter.junk@jcu.edu.au
Australian Journal of Chemistry 73(6) 520-528 https://doi.org/10.1071/CH19417
Submitted: 28 August 2019 Accepted: 18 October 2019 Published: 14 January 2020
Abstract
The reaction of nBuLi with 3,5-dimethylpyrazole (Me2pzH) in Et2O or tmeda/hexane (tmeda = N,N,N′,N′-tetramethylethane-1,2-diamine) and with 3,5-dimethyl-4-nitropyrazolate (Me2pzHNO2) in THF results in the formation of three structurally diverse lithium pyrazolates: namely an Et2O-solvated tetrameric complex [Li4(Me2pz)4(OEt2)4], bridged entirely with μ-η2:η1-pyrazolate bonding, a hexanuclear complex [Li6(Me2pz)6(tmeda)2] with four different coordination modes (μ-η1:η1, μ-η2:η1, μ3-η1:η2:η1 and μ3-η2:η2:η1), and a new polymeric compound [Li2(Me2pzNO2)2(thf)2]n, with [Li2(Me2pzNO2)2(thf)2] groups linked by –NO2 coordination. A mononuclear zinc complex [Zn(tBu2pz)2(tBu2pzH)2].1/2THF (tBu2pzH = 3,5-di-tert-butylpyrazole) was prepared by reaction of tBu2pzH with ZnEt2, unidentate tBu2pz groups being stabilised by N–H⋯N hydrogen bonding. Treatment of 3,5-diphenylpyrazole (Ph2pzH) with trimethylaluminium (mole ratio 3 : 1) in THF led to the formation of dinuclear [AlMe2(μ-Ph2pz)]2.1/2THF.
References
[1] S. Fustero, M. Sánchez-Roselló, P. Barrio, A. Simón-Fuentes, Chem. Rev. 2011, 111, 6984.| Crossref | GoogleScholarGoogle Scholar | 21806021PubMed |
[2] (a) G. La Monica, G. A. Ardizzoia, in Progress in Inorganic Chemistry (Ed. F. A. Cotton) 1997, Vol. 46, pp. 151–238 (John Wiley & Sons, Inc.: New York, NY).
(b) M. A. Halcrow, Dalton Trans. 2009, 2059.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Klingele, S. Dechert, F. Meyer, Coord. Chem. Rev. 2009, 253, 2698.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Viciano-Chumillas, S. Tanase, L. J. de Jongh, J. Reedijk, Eur. J. Inorg. Chem. 2010, 3403.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Werner, V. Bayer, N. E. Rad, P. C. Junk, G. B. Deacon, R. Anwander, Dalton Trans. 2018, 5952.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) W. Zheng, M. J. Heeg, C. H. Winter, Eur. J. Inorg. Chem. 2004, 2652.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Hitzbleck, A. T. O’Brien, C. M. Forsyth, G. B. Deacon, K. Ruhlandt-Senge, Chem. – Eur. J. 2004, 10, 3315.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Pfeiffer, M. J. Heeg, C. H. Winter, Angew. Chem. Int. Ed. 1998, 37, 2517.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) W. Zheng, N. C. Mösch-Zanetti, T. Blunck, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, Organometallics 2001, 20, 3299.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. B. Deacon, E. E. Delbridge, C. M. Forsyth, P. C. Junk, B. W. Skelton, A. H. White, Aust. J. Chem. 1999, 52, 733.
| Crossref | GoogleScholarGoogle Scholar |
[5] W. Zheng, A. Stasch, J. Prust, H. W. Roesky, F. Cimpoesu, M. Noltemeyer, H.-G. Schmidt, Angew. Chem. Int. Ed. 2001, 40, 3461.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Z. Yu, M. J. Heeg, C. H. Winter, Chem. Commun. 2001, 353.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z. Yu, J. M. Wittbrodt, M. J. Heeg, H. B. Schlegel, C. H. Winter, J. Am. Chem. Soc. 2000, 122, 9338.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Yu, J. M. Wittbrodt, A. Xia, M. J. Heeg, H. B. Schlegel, C. H. Winter, Organometallics 2001, 20, 4301.
| Crossref | GoogleScholarGoogle Scholar |
[7] C. Yélamos, M. J. Heeg, C. H. Winter, Inorg. Chem. 1998, 37, 3892.
| Crossref | GoogleScholarGoogle Scholar | 11670499PubMed |
[8] G. B. Deacon, E. E. Delbridge, C. M. Forsyth, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 2000, 745.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) S. Beaini, G. B. Deacon, A. P. Erven, P. C. Junk, D. R. Turner, Chem. Asian J. 2007, 2, 539.
| Crossref | GoogleScholarGoogle Scholar | 17441192PubMed |
(b) S.-Á. Cortés-Llamas, R. Hernández-Lamoneda, M.-Á. Velázquez-Carmona, M.-A. Muñoz-Hernández, R. A. Toscano, Inorg. Chem. 2006, 45, 286.
| Crossref | GoogleScholarGoogle Scholar |
(c) M.-A. Velazquez-Carmona, A.-J. Metta-Magana, S.-A. Cortes-Llamas, V. Montrel-Palma, M.-A. Munoz-Hernandez, Polyhedron 2009, 28, 205.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) T. Kloubert, C. Müller, S. Krieck, T. Schlotthauer, H. Görls, M. Westerhausen, Eur. J. Inorg. Chem. 2012, 5991.
| Crossref | GoogleScholarGoogle Scholar |
(b) B. Schowtka, H. Görls, M. Westerhausen, Z. Anorg. Allg. Chem. 2014, 640, 907.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) T. Kloubert, H. Görls, M. Westerhausen, Z. Anorg. Allg. Chem. 2010, 636, 2405.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Komorski, M. K. Leszczyński, I. Justyniak, J. Lewiński, Inorg. Chem. 2016, 55, 5104.
| Crossref | GoogleScholarGoogle Scholar |
[12] C. T. Sirimanne, Z. Yu, M. J. Heeg, C. H. Winter, J. Organomet. Chem. 2006, 691, 2517.
| Crossref | GoogleScholarGoogle Scholar |
[13] C.-C. Chang, T.-Y. Her, F.-Y. Hsieh, C.-Y. Yang, M. Y. Chiang, G.-H. Lee, Y. Wang, S.-M. Peng, J. Chin. Chem. Soc. 1994, 41, 783.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. M. Bakker, L. J. Barbour, G. B. Deacon, P. C. Junk, G. O. Lloyd, J. W. Steed, J. Organomet. Chem. 2010, 695, 2720.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) P. B. Hitchcock, M. F. Lappert, L. Maron, A. V. Protchenko, Angew. Chem. Int. Ed. 2008, 47, 1488.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Meermann, K. W. Tornroos, W. Nerdal, R. Anwander, Angew. Chem. Int. Ed. 2007, 46, 6508.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Sitzmann, T. Dezember, O. Schmitt, F. Weber, G. Wolmerhauser, Z. Anorg. Allg. Chem. 2000, 626, 2241.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. A. Fischer, A. Roesch, H. Eisen, G. Ballmann, M. Wiesinger, J. Langer, C. Foerber, S. Harder, Dalton Trans. 2019, 6757.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Y. Kim, Y. Yang, J. R. Abelson, G. S. Girolami, Inorg. Chem. 2007, 46, 9060.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Torvisco, K. Decker, F. Uhlig, K. Ruhlandt-Senge, Inorg. Chem. 2009, 48, 11459.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. C. Sockwell, T. P. Hanusa, J. C. Huffman, J. Am. Chem. Soc. 1992, 114, 3393.
| Crossref | GoogleScholarGoogle Scholar |
(h) H. Rouendeji, A. Ratsifitahina, T. Roisnel, V. Dorcet, S. Kahlal, J.-V. Saillard, J. F. Carpentier, Y. Sarazin, Chem. – Eur. J. 2019, 25, 8854.
[16] J. Yamamoto, C. A. Wilkie, Inorg. Chem. 1971, 10, 1129.
| Crossref | GoogleScholarGoogle Scholar |
[17] G. B. Deacon, C. M. Forsyth, A. Gitlits, R. Harika, P. C. Junk, B. W. Skelton, A. H. White, Angew. Chem. Int. Ed. Engl. 2002, 41, 3249.
| Crossref | GoogleScholarGoogle Scholar | 12207404PubMed |
[18] N. E. Rad, P. C. Junk, G. B. Deacon, J. Wang, Z. Anorg. Allg. Chem. 2019, 645, 871.
| Crossref | GoogleScholarGoogle Scholar |
[19] O. M. El-Kadri, M. J. Heeg, C. H. Winter, J. Organomet. Chem. 2009, 694, 3902.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. J. Heeg, A. Sadique, C. H. Winter, CCDC 779760, CSD Communication, 2010.
[21] A. Stasch, Chem. Commun. 2015, 5056.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. R. Bürgstein, M. T. Gamer, P. W. Roesky, J. Am. Chem. Soc. 2004, 126, 5213.
| Crossref | GoogleScholarGoogle Scholar | 15099105PubMed |
[23] M. K. Ehlert, S. J. Rettig, A. Storr, R. C. Thompson, J. Trotter, Can. J. Chem. 1990, 68, 1494.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. Arduini, A. Storr, J. Chem. Soc., Dalton Trans. 1974, 503.
| Crossref | GoogleScholarGoogle Scholar |
[25] W. Zheng, H. Hohmeister, N. C. Mösch-Zanetti, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, Inorg. Chem. 2001, 40, 2363.
| Crossref | GoogleScholarGoogle Scholar | 11327914PubMed |
[26] (a) C. Fernández-Castaño, C. Foces-Foces, N. Jagerovic, J. Elguero, J. Mol. Struct. 1995, 355, 265.
(b) J. Elguero, E. Gonzalez, R. Jacquier, Bull. Soc. Chim. Fr. 1968, 707.
[27] U. Jordis, S. M. Hecht, U.S. patent number US4282361 1981.
[28] P. Ravi, S. P. Tewari, Catal. Commun. 2013, 42, 35.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |
[30] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 25537608PubMed |