The Fabrication of 2D Cu-Based MOF Nanosheets for DNA Detection
Xuan Qi A , Lingyu Xia A , Yunong Li A , Tieqiang Wang A , Xuemin Zhang A , Junyi Chen B C , Liying Zhang A C and Yu Fu A CA College of Sciences, Northeastern University, Shenyang 110819, China.
B Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Alaer, Xinjiang Uygur Autonomous Region 843300, China.
C Corresponding authors. Email: sln5xn@163.com; zhangliying@mail.neu.edu.cn; fuyu@mail.neu.edu.cn
Australian Journal of Chemistry 72(12) 939-944 https://doi.org/10.1071/CH19312
Submitted: 9 July 2019 Accepted: 11 September 2019 Published: 4 October 2019
Abstract
The Cu-based metal–organic framework (MOF) analogues, copper 1,4-benzenedicarboxylate (CuBDC), copper 2,6-naphthalenedicarboxylate (Cu(2,6-NDC)), and copper 1,4-naphthalenedicarboxylate (Cu(1,4-NDC)) MOF nanosheets, are prepared as biosensor nanoplatforms for DNA detection by a spray method. With the ultrathin 2D structure, the fabricated MOF nanosheets exhibited better detection of target DNA, in particular when compared with the corresponding 3D MOF bulky crystals, when used as a DNA biosensor platform. The Cu(1,4-NDC) nanosheets display a distinct sensitivity with a detection limit of 0.3 nM and linear range of 0–20 nM, and selectivity for the target DNA or target DNA mixture. The feasible biosensor nanoplatform composed of 2D MOF nanosheets broadens the application scope of MOF nanosheets.
References
[1] F. Patolsky, E. Katz, A. Bardea, I. Willner, Langmuir 1999, 15, 3703.| Crossref | GoogleScholarGoogle Scholar |
[2] A. Sassolas, B. D. Leca-Bouvier, L. J. Blum, Chem. Rev. 2008, 108, 109.
| Crossref | GoogleScholarGoogle Scholar | 18095717PubMed |
[3] Y. Liu, M. Zhou, Y. Liu, G. Shi, J. Zhang, J. Cao, K. Huang, Y. Chen, RSC Adv. 2014, 4, 22888.
| Crossref | GoogleScholarGoogle Scholar |
[4] L. Hong, F. Zhou, D. Shi, X. Zhang, G. Wang, Biosens. Bioelectron. 2017, 95, 152.
| Crossref | GoogleScholarGoogle Scholar | 28445812PubMed |
[5] A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, Anal. Chem. 1996, 68, 2905.
| Crossref | GoogleScholarGoogle Scholar | 8794925PubMed |
[6] X. Liu, W. Tan, Anal. Chem. 1999, 71, 5054.
| Crossref | GoogleScholarGoogle Scholar | 10575961PubMed |
[7] J. Li, W. Tan, K. Wang, D. Xiao, X. Yang, X. He, Z. Tang, Anal. Sci. 2001, 17, 1149.
| Crossref | GoogleScholarGoogle Scholar | 11990586PubMed |
[8] M. F. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, J. T. McDevitt, Anal. Chem. 2003, 75, 4732.
| Crossref | GoogleScholarGoogle Scholar | 14674448PubMed |
[9] C. Fan, K. W. Plaxco, A. J. Heeger, Proc. Natl. Acad. Sci. USA 2003, 100, 9134.
| Crossref | GoogleScholarGoogle Scholar | 12867594PubMed |
[10] X. Zhou, J. Zhou, Anal. Chem. 2004, 76, 5302.
| Crossref | GoogleScholarGoogle Scholar | 15362886PubMed |
[11] G. Wang, Y. Zhu, L. Chen, X. Zhang, Biosens. Bioelectron. 2015, 63, 552.
| Crossref | GoogleScholarGoogle Scholar | 25150781PubMed |
[12] C. Lu, H. Yang, C. Zhu, X. Chen, G. Chen, Angew. Chem. Int. Ed. 2009, 48, 4785.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, Adv. Funct. Mater. 2010, 20, 453.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. Wu, R. Kempaiah, P. J. Huang, V. Msheshwari, J. Liu, Langmuir 2011, 27, 2731.
| Crossref | GoogleScholarGoogle Scholar | 21302946PubMed |
[15] Y. Chen, C. Tan, H. Zhang, L. Wang, Chem. Soc. Rev. 2015, 44, 2681.
| Crossref | GoogleScholarGoogle Scholar | 25519856PubMed |
[16] J. Chen, Y. Huang, X. Yang, H. Zhang, Z. Li, B. Qin, X. Chen, H. Qiu, Anal. Chim. Acta 2018, 1023, 89.
| Crossref | GoogleScholarGoogle Scholar | 29754611PubMed |
[17] Y. Wang, H. Li, D. Xu, Anal. Chim. Acta 2016, 905, 149.
| Crossref | GoogleScholarGoogle Scholar | 26755149PubMed |
[18] S. Iijima, Nature 1991, 354, 56.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Chen, H. Liu, T. Ye, J. Kim, C. Mao, J. Am. Chem. Soc. 2007, 129, 8696.
| Crossref | GoogleScholarGoogle Scholar | 17589998PubMed |
[20] Z. Liu, X. Li, S. M. Tabakman, K. Jiang, S. Fan, H. Dai, J. Am. Chem. Soc. 2008, 130, 13540.
| Crossref | GoogleScholarGoogle Scholar | 18803379PubMed |
[21] R. Yang, J. Jin, Y. Chen, N. Shao, H. Kang, Z. Xiao, Z. Tang, Y. Wu, Z. Zhu, W. Tan, J. Am. Chem. Soc. 2008, 130, 8351.
| Crossref | GoogleScholarGoogle Scholar | 18528999PubMed |
[22] Y. Wang, Z. Tang, S. Tan, N. A. Kotov, Nano Lett. 2005, 5, 243.
| Crossref | GoogleScholarGoogle Scholar | 15794604PubMed |
[23] H. Zhao, G. Qiu, Z. Zheng, M. Li, B. Sun, L. Qin, S. Yang, W. Chen, J. Chen, Anal. Chim. Acta 2016, 922, 55.
| Crossref | GoogleScholarGoogle Scholar | 27154832PubMed |
[24] M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang, J. Ping, Z. Zhang, Q. Lu, Y. Yu, H. Xu, Y. Zhao, H. Zhang, Adv. Mater. 2015, 27, 7372.
| Crossref | GoogleScholarGoogle Scholar | 26468970PubMed |
[25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
| Crossref | GoogleScholarGoogle Scholar | 15499015PubMed |
[26] C. Zhu, Z. Zeng, H. Li, F. Li, C. Fan, H. Zhang, J. Am. Chem. Soc. 2013, 135, 5998.
| Crossref | GoogleScholarGoogle Scholar | 23570230PubMed |
[27] Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang, H. Zhang, Adv. Mater. 2015, 27, 935.
| Crossref | GoogleScholarGoogle Scholar | 25504749PubMed |
[28] C. Tan, P. Yu, Y. Hu, J. Chen, Y. Huang, Y. Cai, Z. Luo, B. Li, Q. Lu, L. Wang, Z. Liu, H. Zhang, J. Am. Chem. Soc. 2015, 137, 10430.
| Crossref | GoogleScholarGoogle Scholar | 26241063PubMed |
[29] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, Nat. Chem. 2013, 5, 203.
| Crossref | GoogleScholarGoogle Scholar | 23422562PubMed |
[30] Y. Li, S. Wang, Y. Zhou, X. Bai, G. Song, X. Zhao, T. Wang, X. Qi, X. Zhang, Y. Fu, Langmuir 2017, 33, 1060.
| Crossref | GoogleScholarGoogle Scholar | 28064489PubMed |
[31] M. Oh, C. A. Mirkin, Nature 2005, 438, 651.
| Crossref | GoogleScholarGoogle Scholar | 16319888PubMed |
[32] M. Shete, P. Kumar, J. E. Bachman, X. Ma, Z. P. Smith, W. Xu, K. A. Mkhoyan, J. R. Long, M. Tsapatsis, J. Membr. Sci. 2018, 549, 312.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, J. Gascon, Nat. Mater. 2015, 14, 48.
| Crossref | GoogleScholarGoogle Scholar | 25362353PubMed |
[34] X. Liu, F. Wang, R. Aizen, O. Yehezkeli, I. Willner, J. Am. Chem. Soc. 2013, 135, 11832.
| Crossref | GoogleScholarGoogle Scholar | 23841845PubMed |
[35] X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Chem. Commun. 2013, 49, 1276.
| Crossref | GoogleScholarGoogle Scholar |
[36] H. Zhang, J. Zhang, G. Huang, Z. Du, H. Jiang, Chem. Commun. 2014, 50, 12069.
| Crossref | GoogleScholarGoogle Scholar |