Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Guanidine-Promoted Direct Synthesis of Open-Chained Carbonates

Yuhan Shang A , Mai Zheng A , Haibo Zhang A B C and Xiaohai Zhou A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China.

B Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China.

C Corresponding authors. Email: haibozhang1980@gmail.com; zxh7954@whu.edu.cn

Australian Journal of Chemistry 72(12) 933-938 https://doi.org/10.1071/CH18623
Submitted: 19 December 2018  Accepted: 18 August 2019   Published: 17 September 2019

Abstract

In order to reduce CO2 accumulation in the atmosphere, chemical fixation methodologies were developed and proved to be promising. In general, CO2 was turned into cyclic carbonates by cycloaddition with epoxides. However, the cyclic carbonates need to be converted into open-chained carbonates by transesterification for industrial usage, which results in wasted energy and materials. Herein, we report a process catalyzed by tetramethylguanidine (TMG) to afford linear carbonates directly. This process is greener and shows potential for industrial applications.


References

[1]  IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2014 [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds)], 151 pp. (IPCC: Geneva, Switzerland).

[2]  T. Fujihara, Y. Tsuji, J. Jpn. Petrol. Inst. 2016, 59, 84.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Q. He, J. W. O’Brien, K. A. Kitselman, L. E. Tompkins, G. C. T. Curtis, F. M. Kerton, Catal. Sci. Technol. 2014, 4, 1513.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D.-H. Lan, N. Fan, Y. Wang, X. Gao, P. Zhang, L. Chen, C.-T. Au, S.-F. Yin, Chin. J. Catal. 2016, 37, 826.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) S. Fukuoka, M. Tojo, H. Hachiya, M. Aminaka, K. Hasegawa, Polym. J. 2007, 39, 91.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) D. Franco, C. Gürtler, T. Müller, O. Pieter, P. Angelina, J. Rechner, F. Risse, A Method for Preparing Diaryl Carbonates from Dialkyl Carbonates. Patent No. DE102010042937A1 2011

[5]  J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434.
         | Crossref | GoogleScholarGoogle Scholar | 29220170PubMed |

[6]  (a) W. McGhee, D. Riley, M. Christ, K. Christ, Organometallics 1993, 12, 1429.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) W. McGhee, D. Riley, K. Christ, Y. Pan, B. Parnas, J. Org. Chem. 1995, 60, 2820.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  E. R. Pérez, M. Odnicki da Silva, V. C. Costa, U. P. Rodrigues-Filho, D. W. Franco, Tetrahedron Lett. 2002, 43, 4091.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. R. Pérez, R. H. A. Santos, M. T. P. Gambardella, L. G. M. de Macedo, U. P. Rodrigues-Filho, J.-C. Launay, D. W. Franco, J. Org. Chem. 2004, 69, 8005.
         | Crossref | GoogleScholarGoogle Scholar | 15527283PubMed |

[9]  D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert, C. L. Liotta, J. Org. Chem. 2005, 70, 5335.
         | Crossref | GoogleScholarGoogle Scholar | 15960544PubMed |

[10]  Q. Song, Z. Zhou, L. He, Green Chem. 2017, 19, 3707.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Niemi, T. Repo, Eur. J. Org. Chem. 2019, 1180.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Dabral, T. Schaub, Adv. Synth. Catal. 2019, 361, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Zhang, L. He, Aust. J. Chem. 2014, 67, 980.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  R. Steinhardt, S. C. Hiew, H. Mohapatra, Z. O. Du Nguyen, R. Truong, A. Esser-Kahn, ACS Cent. Sci. 2017, 3, 1271.
         | Crossref | GoogleScholarGoogle Scholar | 29296667PubMed |

[16]  T. Kitamura, Y. Inoue, T. Maeda, J. Oyamada, Synth. Commun. 2016, 46, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  F. S. Pereira, E. R. deAzevedo, E. F. da Silva, T. J. Bonagamba, D. L. da Silva Agostíni, A. Magalhães, A. E. Job, E. R. Pérez González, Tetrahedron 2008, 64, 10097.
         | Crossref | GoogleScholarGoogle Scholar |