Three New Spongian Diterpenes from the Marine Sponge Dendrilla rosea
Joshua B. Hayton A B , Gary D. Grant C D and Anthony R. Carroll A B E FA School of Environment and Science, Griffith University, Gold Coast, Qld 4222, Australia.
B Environmental Futures Research Institute, Griffith University, Gold Coast, Qld 4222, Australia.
C School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Qld 4222, Australia.
D Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4222, Australia.
E Griffith Institute for Drug Discovery, Griffith University, Brisbane, Qld 4111, Australia.
F Corresponding author. Email: a.carroll@griffith.edu.au
Australian Journal of Chemistry 72(12) 964-968 https://doi.org/10.1071/CH19299
Submitted: 1 July 2019 Accepted: 18 September 2019 Published: 17 October 2019
Abstract
Three new diterpenes, aplyroseols 20–22 (2–4), were isolated from two specimens of the Australian marine sponge Dendrilla rosea. The structures and relative configurations of the new metabolites were elucidated from analysis of 2D NMR data. The compounds were screened for activity against Staphylococcus aureus, but were inactive at 64 µg mL−1.
References
[1] R. A. Keyzers, P. T. Northcote, M. T. Davies-Coleman, Nat. Prod. Rep. 2006, 23, 321.| Crossref | GoogleScholarGoogle Scholar | 16572231PubMed |
[2] P. Karuso, P. R. Bergquist, R. C. Cambie, J. S. Buckleton, G. R. Clark, C. E. F. Rickard, Aust. J. Chem. 1986, 39, 1643.
| Crossref | GoogleScholarGoogle Scholar |
[3] F. J. Schmitz, J. S. Chang, M. B. Hossain, D. Van der Helm, J. Org. Chem. 1985, 50, 2862.
| Crossref | GoogleScholarGoogle Scholar |
[4] K. W. Yong, A. A. Salim, M. J. Garson, Tetrahedron 2008, 64, 6733.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Arnó, L. Betancur-Galvis, M. A. González, J. Sierra, R. J. Zaragozá, Bioorg. Med. Chem. 2003, 11, 3171.
| Crossref | GoogleScholarGoogle Scholar | 12818680PubMed |
[6] L. Betancur-Galvis, C. Zuluaga, M. Arnó, M. A. González, R. J. Zaragozá, J. Nat. Prod. 2002, 65, 189.
| Crossref | GoogleScholarGoogle Scholar | 11858754PubMed |
[7] J. B. Hayton, G. D. Grant, A. R. Carroll, Magn. Reson. Chem. 2017, 55, 1029.
| Crossref | GoogleScholarGoogle Scholar | 28558137PubMed |
[8] L. Betancur-Galvis, C. Zuluaga, M. Arnó, M. A. González, R. J. Zaragozá, J. Nat. Prod. 2002, 65, 189.
| Crossref | GoogleScholarGoogle Scholar | 11858754PubMed |
[9] A. J. Blake, M. A. González, M. J. Gil-Gimeno, Acta Crystallogr. C 2006, 62, o208.
| Crossref | GoogleScholarGoogle Scholar | 16598145PubMed |
[10] M. Arnó, M. A. González, R. Zaragozá, J. Org. Chem. 2003, 68, 1242.
| Crossref | GoogleScholarGoogle Scholar | 12585861PubMed |
[11] W. C. Taylor, S. Toth, Aust. J. Chem. 1997, 50, 895.
| Crossref | GoogleScholarGoogle Scholar |
[12] P. Karuso, W. C. Taylor, Aust. J. Chem. 1986, 39, 1629.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. A. Gonzalez, Curr. Bioact. Compd. 2007, 3, 1.
| Crossref | GoogleScholarGoogle Scholar |
[14] P. Karuso, B. W. Skelton, W. C. Taylor, A. H. White, Aust. J. Chem. 1984, 37, 1081.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Tischler, R. J. Andersen, M. I. Choudhary, J. Clardy, J. Org. Chem. 1991, 56, 42.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. Carmely, M. Cojocaru, Y. Loya, Y. Kashman, J. Org. Chem. 1988, 53, 4801.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. Hu, A. G. Legako, A. P. D. Espindola, J. B. MacMillan, J. Org. Chem. 2012, 77, 3401.
| Crossref | GoogleScholarGoogle Scholar | 22384985PubMed |