Strategies for Red-Shifting Type I Photoinitiators: Internal Electric Fields versus Lewis Acids versus Increasing Conjugation*
Nicholas S. Hill A and Michelle L. Coote A BA ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
B Corresponding author. Email: michelle.coote@anu.edu.au
Australian Journal of Chemistry 72(8) 627-632 https://doi.org/10.1071/CH19262
Submitted: 9 June 2019 Accepted: 12 July 2019 Published: 31 July 2019
Abstract
Time-dependent density functional theory calculations were performed on derivatives of Irgacure 2959, a water-soluble, acetophenone-type photoinitiator, in order to assess the relative merits and drawbacks of three distinct ways of modifying its photochemistry: Lewis acid complexation, changing the amount of conjugation in the molecule, and application of an internal electric field through inclusion of a remote charged functional group. The effectiveness of each of the three methods was evaluated against the magnitude of the change in energy of the excited states. Internal electric fields were shown to provide the best method for targeting specific excited states in a controlled and rational manner. The other strategies also had significant effects but it was more difficult to independently target different transitions. Nonetheless, for the specific case of Irgacure 2959, we predict that its complexation with Mg2+ ions in a range of solvents will both red-shift the initiator’s absorbance while improving its efficiency and it is thus a promising candidate for testing as a visible light photoinitiator.
References
[1] S. Shaik, R. Ramanan, D. Danovich, D. Mandal, Chem. Soc. Rev. 2018, 47, 5125.| Crossref | GoogleScholarGoogle Scholar | 29979456PubMed |
[2] S. Ciampi, N. Darwish, H. M. Aitken, I. Díez-Perez, M. L. Coote, Chem. Soc. Rev. 2018, 47, 5146.
| Crossref | GoogleScholarGoogle Scholar | 29947390PubMed |
[3] G. Gryn’ova, M. L. Coote, J. Am. Chem. Soc. 2013, 135, 15392.
| Crossref | GoogleScholarGoogle Scholar | 24090128PubMed |
[4] G. Gryn’ova, M. L. Coote, Aust. J. Chem. 2017, 70, 367.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. S. Hill, M. L. Coote, J. Am. Chem. Soc. 2018, 140, 17800.
| Crossref | GoogleScholarGoogle Scholar | 30468576PubMed |
[6] D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, J. Org. Chem. 2007, 72, 9550.
| Crossref | GoogleScholarGoogle Scholar | 17979286PubMed |
[7] A. E. Mohamed, F. H. Ahmed, S. Arulmozhiraja, C. Y. Lin, M. C. Taylor, E. R. Krausz, C. J. Jackson, M. L. Coote, Mol. Biosyst. 2016, 12, 1110.
| Crossref | GoogleScholarGoogle Scholar | 26876228PubMed |
[8] B. B. Noble, A. C. Mater, L. M. Smith, M. L. Coote, Polym. Chem. 2016, 7, 6400.
| Crossref | GoogleScholarGoogle Scholar |
[9] W. Schuurman, P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, D. W. Hutmacher, F. P. W. Melchels, T. J. Klein, J. Malda, Macromol. Biosci. 2013, 13, 551.
| Crossref | GoogleScholarGoogle Scholar | 23420700PubMed |
[10] B. J. Klotz, D. Gawlitta, A. J. W. P. Rosenberg, J. Malda, F. P. W. Melchels, Trends Biotechnol. 2016, 34, 394.
| Crossref | GoogleScholarGoogle Scholar | 26867787PubMed |
[11] K. S. Lim, B. S. Schon, N. V. Mekhileri, G. C. J. Brown, C. M. Chia, S. Prabakar, G. J. Hooper, T. B. F. Woodfield, ACS Biomater. Sci. Eng. 2016, 2, 1752.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. Jockusch, M. S. Landis, B. Freiermuth, N. J. Turro, Macromolecules 2001, 34, 1619.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Zhang, M. Frigoli, F. Dumur, P. Xiao, L. Ronchi, B. Graff, F. Morlet-Savary, J. P. Fouassier, D. Gigmes, J. Lalevée, Macromolecules 2014, 47, 2811.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Shi, C. Croutxé-Barghorn, X. Allonas, Prog. Polym. Sci. 2017, 65, 1.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Kabatc, M. Zasada, J. Paczkowski, J. Polym. Sci. A Polym. Chem. 2007, 45, 3626.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 2015, 11, 5340.
| Crossref | GoogleScholarGoogle Scholar | 26574326PubMed |
[17] M. Huix-Rotllant, N. Ferre, J. Chem. Phys. 2014, 140, 134305.
| Crossref | GoogleScholarGoogle Scholar | 24712791PubMed |
[18] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision A.03 2016 (Gaussian Inc.: Wallingford, CT)
[21] A. D. McNaught, A. Wilkinson, IUPAC Compendium of Chemical Terminology, 2nd edn 1997 (Blackwell Scientific Publications: Oxford).