Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aptamer-Based Biosensing with a Cationic AIEgen*

Tracey Luu A D , Mengjie Liu A D , Yilong Chen B , Roozbeh Hushiarian A , Anthony Cass C , Ben Zhong Tang B and Yuning Hong A E
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.

B Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

C Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London 212 0BZ, UK.

D These authors contributed equally to this work.

E Corresponding author. Email: y.hong@latrobe.edu.au

Australian Journal of Chemistry 72(8) 620-626 https://doi.org/10.1071/CH19238
Submitted: 29 May 2019  Accepted: 1 July 2019   Published: 23 July 2019

Abstract

Fabrication of low-cost biosensing platforms with high selectivity and sensitivity is important for constructing portable devices for personal health monitoring. Herein, we report a simple biosensing strategy based on the combination of a cationic AIEgen (aggregation-induced emission fluorogen), TPE-2+, with an aptamer for specific protein detection. The target protein can displace the dye molecules on the dye–aptamer complex, resulting in changes in the fluorescence signal. Selectivity towards different targets can be achieved by simply changing the aptamer sequence. The working mechanism is also investigated.


References

[1]  A. D. Ellington, J. W. Szostak, Nature 1990, 346, 818.
         | Crossref | GoogleScholarGoogle Scholar | 1697402PubMed |

[2]  C. Tuerk, L. Gold, Science 1990, 249, 505.
         | Crossref | GoogleScholarGoogle Scholar | 2200121PubMed |

[3]  H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, H. T. Soh, ACS Nano 2016, 10, 7558.
         | Crossref | GoogleScholarGoogle Scholar | 27399153PubMed |

[4]  J. Ding, W. Zhou, J. Liu, Nucleic Acids Res. 2016, 44, 10377.
         | 27655630PubMed |

[5]  J. Wrzesinski, S. K. Jóźwiakowski, FEBS J. 2008, 275, 1651.
         | Crossref | GoogleScholarGoogle Scholar | 18312410PubMed |

[6]  V.-T. Nguyen, Y. S. Kwon, J. H. Kim, M. B. Gu, Chem. Commun. 2014, 10513.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  V.-T. Nguyen, Y. S. Kwon, M. B. Gu, Curr. Opin. Biotechnol. 2017, 45, 15.
         | Crossref | GoogleScholarGoogle Scholar | 28088092PubMed |

[8]  L. Sun, Q. Zhao, Analyst 2018, 143, 4600.
         | Crossref | GoogleScholarGoogle Scholar | 30191220PubMed |

[9]  W. Xu, A. D. Ellington, Proc. Natl. Acad. Sci. USA 1996, 93, 7475.
         | Crossref | GoogleScholarGoogle Scholar | 8755498PubMed |

[10]  C.-Y. Wang, B.-L. Lin, C.-H. Chen, Int. J. Cancer 2016, 138, 918.
         | Crossref | GoogleScholarGoogle Scholar | 26314689PubMed |

[11]  B. Deng, Y. Lin, C. Wang, F. Li, Z. Wang, H. Zhang, X.-F. Li, X. C. Le, Anal. Chim. Acta 2014, 837, 1.
         | Crossref | GoogleScholarGoogle Scholar | 25000852PubMed |

[12]  R. Stoltenburg, T. Schubert, B. Strehlitz, PLoS One 2015, 10, e0134403.
         | Crossref | GoogleScholarGoogle Scholar | 26221730PubMed |

[13]  N. Bjerregaard, P. A. Andreasen, D. M. Dupont, WIREs RNA 2016, 7, 744.
         | Crossref | GoogleScholarGoogle Scholar | 27173731PubMed |

[14]  I. Shiratori, J. Akitomi, D. A. Boltz, K. Horii, M. Furuichi, I. Waga, Biochem. Biophys. Res. Commun. 2014, 443, 37.
         | Crossref | GoogleScholarGoogle Scholar | 24269231PubMed |

[15]  K. Percze, Z. Szakács, É. Scholz, J. András, Z. Szeitner, C. H. d. Kieboom, G. Ferwerda, M. I. d. Jonge, R. E. Gyurcsányi, T. Mészáros, Sci. Rep. 2017, 7, 42794.
         | Crossref | GoogleScholarGoogle Scholar | 28220811PubMed |

[16]  S. Marton, F. Cleto, M. A. Krieger, J. Cardoso, PLoS One 2016, 11, e0153637.
         | Crossref | GoogleScholarGoogle Scholar | 27104834PubMed |

[17]  V. Thiviyanathan, D. G. Gorenstein, Proteomics Clin. Appl. 2012, 6, 563.
         | Crossref | GoogleScholarGoogle Scholar | 23090891PubMed |

[18]  H. Shi, Z. Tang, Y. Kim, H. Nie, Y. F. Huang, X. He, K. Deng, K. Wang, W. Tan, Chem. Asian J. 2010, 5, 2209.
         | Crossref | GoogleScholarGoogle Scholar | 20806314PubMed |

[19]  X. Yu, Z. Jiang, Anal. Lett. 2011, 44, 898.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Meng, Z. Dai, W. Guo, Y. Chu, G. Chen, Nanomater. Nanotechnol. 2016, 6, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Z. Zhang, J. Yang, W. Pang, G. Yan, RSC Adv. 2017, 7, 54920.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J.-P. Xu, Z.-G. Song, Y. Fang, J. Mei, L. Jia, A. J. Qin, J. Z. Sun, J. Ji, B. Z. Tang, Analyst 2010, 135, 3002.
         | Crossref | GoogleScholarGoogle Scholar | 20877906PubMed |

[24]  Y. Hu, J. Liu, X. You, C. Wang, Z. Li, W. Xie, Sensors 2017, 17, 2246.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  K. Ma, F. Zhang, N. Sayyadi, W. Chen, A. G. Anwer, A. Care, B. Xu, W. Tian, E. M. Goldys, G. Liu, ACS Sens. 2018, 3, 320.
         | Crossref | GoogleScholarGoogle Scholar | 29308890PubMed |

[26]  X. Wang, P. Song, L. Peng, A. Tong, Y. Xiang, ACS Appl. Mater. Interfaces 2016, 8, 609.
         | Crossref | GoogleScholarGoogle Scholar | 26653325PubMed |

[27]  X. Wang, J. Dai, X. Min, Z. Yu, Y. Cheng, K. Huang, J. Yang, X. Yi, X. Lou, F. Xia, Anal. Chem. 2018, 90, 8162.
         | Crossref | GoogleScholarGoogle Scholar | 29893116PubMed |

[28]  P. Zhang, Z. Zhao, C. Li, H. Su, Y. Wu, R. T. K. Kwok, J. W. Y. Lam, P. Gong, L. Cai, B. Z. Tang, Anal. Chem. 2018, 90, 1063.
         | Crossref | GoogleScholarGoogle Scholar | 29275625PubMed |

[29]  J. Chen, H. Jiang, H. Zhou, Z. Hu, N. Niu, S. A. Shahzad, C. Yu, Chem. Commun. 2017, 2398.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  L. Ma, B. Xu, L. Liu, W. Tian, Chem. Res. Chin. Univ. 2018, 34, 363.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. Zhang, L. Ma, K. Ma, B. Xu, L. Liu, W. Tian, ACS Omega 2018, 3, 12886.
         | Crossref | GoogleScholarGoogle Scholar | 30411022PubMed |

[32]  Y. Jia, F. Wu, P. Liu, G. Zhou, B. Yu, X. Lou, F. Xia, Talanta 2019, 198, 71.
         | Crossref | GoogleScholarGoogle Scholar | 30876604PubMed |

[33]  E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 2013.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  D. T. Tran, K. P. F. Janssen, J. Pollet, E. Lammertyn, J. Anné, A. Van Schepdael, J. Lammertyn, Molecules 2010, 15, 1127.
         | Crossref | GoogleScholarGoogle Scholar | 20335968PubMed |

[35]  Y. Bai, Y. Li, D. Zhang, H. Wang, Q. Zhao, Anal. Chem. 2017, 89, 9467.
         | Crossref | GoogleScholarGoogle Scholar | 28763192PubMed |

[36]  N. Zhao, M. Li, Y. Yan, J. W. Y. Lam, Y. L. Zhang, Y. S. Zhao, K. S. Wong, B. Z. Tang, J. Mater. Chem. C Mater. Opt. Electron. Devices 2013, 1, 4640.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2013, 135, 62.
         | Crossref | GoogleScholarGoogle Scholar |