Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Prototropic Tautomerism and Some Features of the IR Spectra of 2-(3-Chromenyl)-1-hydroxyimidazoles

Polina A. Nikitina https://orcid.org/0000-0003-1542-5565 A B D , Tatiana Yu. Koldaeva A , Vitaly S. Mityanov A C , Vladimir S. Miroshnikov A , Elizaveta I. Basanova A and Valery P. Perevalov A
+ Author Affiliations
- Author Affiliations

A Department of Fine Organic Synthesis and Chemistry of Dyes, D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya square 9, Moscow, 125047, Russia.

B A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova street 28, Moscow, 119991, Russia.

C N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky avenue 47, Moscow, 119991, Russia.

D Corresponding author. Email: polinandrevna@yandex.ru

Australian Journal of Chemistry 72(9) 699-708 https://doi.org/10.1071/CH19222
Submitted: 15 May 2019  Accepted: 14 June 2019   Published: 9 July 2019

Abstract

Prototropic tautomerism of 2-(3-chromenyl)-1-hydroxyimidazoles with various substituents in the chromenyl moiety (1-hydroxyimidazole – imidazole N-oxide) was studied by means of 1H NMR and IR spectroscopies. It was demonstrated that in d6-DMSO solution, the substituents in the chromenyl ring have no influence on the equilibrium shift: the prevalence of the N-oxide tautomeric form is caused by the possibility of stabilization of the planar structure with the help of the carbonyl group in position 5 of the imidazole ring. In contrast, in the solid state the general effect of the chromenyl substituent in position 2 of imidazole plays the leading role. The increase in general electron-withdrawing effect of the chromenyl moiety leads to the prevalence of the imidazole N-oxide tautomer.


References

[1]  P. A. Nikitina, V. P. Perevalov, Chem. Heterocycl. Compd. 2017, 53, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. B. Stensbøl, P. Uhlmann, S. Morel, B. L. Erikssen, J. Felding, H. Kromann, M. B. Hermit, J. R. Greenwood, H. Braüner-Osborne, U. Madsen, F. Junager, P. Krogsgaard-Larsen, M. Begtrup, P. Vedsø, J. Med. Chem. 2002, 45, 19.
         | Crossref | GoogleScholarGoogle Scholar | 11754576PubMed |

[3]  M. Witschel, Bioorg. Med. Chem. 2009, 17, 4221.
         | Crossref | GoogleScholarGoogle Scholar | 19028100PubMed |

[4]  D. Dimova, P. Iyer, M. Vogt, F. Totzke, M. H. G. Kubbutat, C. Schächtele, S. Laufer, J. Bajorath, J. Med. Chem. 2012, 55, 11067.
         | Crossref | GoogleScholarGoogle Scholar | 23210446PubMed |

[5]  R. B. da Silva, U. B. Loback, K. Salomão, S. L. de Castro, J. L. Wardell, S. M. S. V. Wardell, T. E. M. M. Costa, C. Penido, M. G. M. de Oliveira Henriques, S. A. Carvalho, E. F. da Silva, C. A. M. Fraga, Molecules 2013, 18, 3445.
         | Crossref | GoogleScholarGoogle Scholar | 23503118PubMed |

[6]  C. Midrier, S. Montel, R. Braun, K. Haaf, L. Willms, A. van der Lee, J.-N. Volle, J.-L. Pirat, D. Virieux, RSC Adv. 2014, 4, 23770.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  P. A. Nikitina, N. I. Bormotov, L. N. Shishkina, A. Ya. Tikhonov, V. P. Perevalov, Russ. Chem. Bull. 2019, 68, 634.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. Chen, T. Zhang, J. Wang, F. Wang, H. Niu, C. Wu, S. Wang, Eur. J. Med. Chem. 2015, 103, 343.
         | Crossref | GoogleScholarGoogle Scholar | 26363870PubMed |

[9]  T. Zhang, Y. Lv, Y. Lei, D. Liu, Y. Feng, J. Zhao, S. Chen, F. Meng, S. Wang, Eur. J. Med. Chem. 2018, 146, 668.
         | Crossref | GoogleScholarGoogle Scholar | 29407989PubMed |

[10]  A. R. Katritzky, C. D. Hall, B. E.-D. M. El-Gendy, B. Draghici, J. Comput. Aided Mol. Des. 2010, 24, 475.
         | Crossref | GoogleScholarGoogle Scholar | 20490619PubMed |

[11]  Y. C. Martin, J. Comput. Aided Mol. Des. 2009, 23, 693.
         | Crossref | GoogleScholarGoogle Scholar | 19842045PubMed |

[12]  G. Mlostoń, M. Jasiński, A. Wróblewska, H. Heimgartner, Curr. Org. Chem. 2016, 20, 1359.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Tautomerism: Methods and Theories (Ed. L. Antonov) 2014 (Wiley-VCH: Weinheim).

[14]  Tautomerism: Concepts and Applications in Science and Technology (Ed. L. Antonov) 2016 (Wiley-VCH: Weinheim).

[15]  M. Boiani, H. Cerecetto, M. González, O. E. Piro, E. E. Castellano, J. Phys. Chem. A 2004, 108, 11241.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. O. Chua, M. J. Cook, A. R. Katritzky, J. Chem. Soc. B 1971, 2350.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  W. Schilf, L. Stefaniak, M. Witanowski, G. A. Webb, J. Mol. Struct. 1986, 140, 311.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Witanowski, L. Stefaniak, Bull. Pol. Acad. Sci. Chem. 1987, 35, 305.

[19]  S. S. Sabri, M. M. El-Abadellah, H. A. Yasin, J. Heterocycl. Chem. 1987, 24, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  G. Aguirre, M. Boiani, H. Cerecetto, A. Gerpe, M. González, Y. F. Sainz, A. Denicola, C. O. Ocáriz, J. J. Nogal, D. Montero, J. A. Escario, Arch. Pharm. Pharm. Med. Chem. 2004, 337, 259.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  P. A. Nikitina, L. G. Kuz’mina, V. P. Perevalov, I. I. Tkach, Tetrahedron 2013, 69, 3249.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  P. A. Nikitina, A. S. Peregudov, T. Yu. Koldaeva, L. G. Kuz’mina, E. I. Adiulin, I. I. Tkach, V. P. Perevalov, Tetrahedron 2015, 71, 5217.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  R. B. da Silva, E. F. da Silva, S. A. Carvalho, C. A. M. Fraga, S. M. S. V. Wardell, J. L. Wardell, Z. Kristallogr. – Cryst. Mater. 2014, 229, 709.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. A. Amitina, A. Ya. Tikhonov, I. A. Grigor’ev, Yu. V. Gatilov, B. A. Selivanov, Chem. Heterocycl. Compd. 2009, 45, 691.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Ya. Tikhonov, B. A. Selivanov, Yu. V. Gatilov, Tetrahedron Lett. 2015, 56, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  E. B. Nikolaenkova, A. Ya. Tikhonov, S. A. Amitina, Yu. V. Gatilov, Chem. Heterocycl. Compd. 2014, 50, 699.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  V. L. Rusinov, M. N. Kushnir, O. N. Chupakhin, G. G. Alexandrov, Mendeleev Commun. 1993, 3, 213.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. Laus, V. Kahlenberg, Crystals 2012, 2, 1492.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Q.-D. Tu, D. Li, Y. Sun, X.-Y. Han, F. Yi, Y. Sha, Y.-L. Ren, M.-W. Ding, L.-L. Feng, J. Wan, Bioorg. Med. Chem. 2013, 21, 2826.
         | Crossref | GoogleScholarGoogle Scholar | 23623712PubMed |

[30]  D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, Introduction to Spectroscopy, 5th edn 2015 (Cengage Learning: Boston, MA).