The Effect of Solvent on the Seebeck Coefficient and Thermocell Performance of Cobalt Bipyridyl and Iron Ferri/Ferrocyanide Redox Couples
Abuzar Taheri A , Douglas R. MacFarlane B , Cristina Pozo-Gonzalo A and Jennifer M. Pringle A CA ARC Centre of Excellence for Electromaterials Science, Deakin University, 221 Burwood Highway, Burwood, Vic. 3125, Australia.
B School of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: jenny.pringle@deakin.edu.au
Australian Journal of Chemistry 72(9) 709-716 https://doi.org/10.1071/CH19245
Submitted: 31 May 2019 Accepted: 10 July 2019 Published: 2 August 2019
Abstract
The conversion of thermal energy to electricity using thermoelectrochemical cells (thermocells) is a developing approach to harvesting waste heat. The performance of a thermocell is highly dependent on the solvent used in the electrolyte, but the interplay of the various solvent effects is not yet well understood. Here, using the redox couples [Co(bpy)3][BF4]2/3 (bpy = 2,2′-bipyridyl) and (Et4N)3/(NH4)4Fe(CN)6, which have been designed to allow dissolution in different solvent systems (aqueous, non-aqueous, and mixed solvent), the effect of solvent on the Seebeck coefficient (Se) and cell performance was studied. The highest Se for a cobalt-based redox couple measured thus far is reported. Different trends in the Seebeck coefficients of the two redox couples as a function of the ratio of organic solvent to water were observed. The cobalt redox couple produced a more positive Se in organic solvent than in water, whereas addition of water to organic solvent resulted in a more negative Se for Fe(CN)6 3−/4−. UV-vis and IR investigations of the redox couples indicate that Se is affected by changes in solvent–ligand interactions in the different solvent systems.
References
[1] M. F. Dupont, D. R. MacFarlane, J. M. Pringle, Chem. Commun. 2017, 6288.| Crossref | GoogleScholarGoogle Scholar |
[2] T. Quickenden, Y. Mua, J. Electrochem. Soc. 1995, 142, 3985.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) S. Sahami, M. J. Weaver, J. Electroanal. Chem. Interfacial Electrochem. 1981, 122, 155.
| Crossref | GoogleScholarGoogle Scholar |
(b) E. L. Yee, R. J. Cave, K. L. Guyer, P. D. Tyma, M. J. Weaver, J. Am. Chem. Soc. 1979, 101, 1131.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. J. Abraham, D. R. MacFarlane, J. M. Pringle, Energy Environ. Sci. 2013, 6, 2639.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. A. Lazar, D. Al-Masri, D. R. MacFarlane, J. M. Pringle, Phys. Chem. Chem. Phys. 2016, 18, 1404.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Migita, N. Tachikawa, Y. Katayama, T. Miura, Electrochemistry 2009, 77, 639.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y. Yamato, Y. Katayama, T. Miura, J. Electrochem. Soc. 2013, 160, H309.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. T. Hupp, M. J. Weaver, Inorg. Chem. 1984, 23, 3639.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang, C. Haines, Adv. Mater. 2017, 29, 1605652.
| Crossref | GoogleScholarGoogle Scholar | 29239517PubMed |
[8] T. Kim, J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang, Y. H. Kim, Nano Energy 2017, 31, 160.
| Crossref | GoogleScholarGoogle Scholar |
[9] Y. Marcus, Chem. Rev. 2009, 109, 1346.
| Crossref | GoogleScholarGoogle Scholar | 19236019PubMed |
[10] J. Duan, G. Feng, B. Yu, J. Li, M. Chen, P. Yang, J. Feng, K. Liu, J. Zhou, Nat. Commun. 2018, 9, 5146.
| Crossref | GoogleScholarGoogle Scholar | 30514952PubMed |
[11] S. Fendt, S. Padmanabhan, H. W. Blanch, J. M. Prausnitz, J. Chem. Eng. Data 2011, 56, 31.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Ue, K. Ida, S. Mori, J. Electrochem. Soc. 1994, 141, 2989.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Tariq, K. Shimizu, J. Esperança, J. C. Lopes, L. Rebelo, Phys. Chem. Chem. Phys. 2015, 17, 13480.
| Crossref | GoogleScholarGoogle Scholar | 25933136PubMed |
[14] (a) N. M. J. N. Ibrahim, S. M. Said, M. M. I. M. Hasnan, M. F. M. Sabri, N. Abdullah, A. Mainal, M. F. M. Salleh, T. F. T. M. N. Izam, Mater. Chem. Phys. 2019, 232, 169.
(b) Y. Katayama, S. Nakayama, N. Tachikawa, K. Yoshii, J. Electrochem. Soc. 2017, 164, H5286.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Taheri, D. R. MacFarlane, C. Pozo Gonzalo, J. M. Pringle, Electrochim. Acta 2019, 297, 669.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. Marcus, Chem. Soc. Rev. 1993, 22, 409.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Chem. – Eur. J. 2012, 18, 10969.
| Crossref | GoogleScholarGoogle Scholar | 22806990PubMed |
[18] J. He, D. Al-Masri, D. R. MacFarlane, J. M. Pringle, Faraday Discuss. 2016, 190, 205.
| Crossref | GoogleScholarGoogle Scholar | 27200437PubMed |
[19] T. J. Kang, S. Fang, M. E. Kozlov, C. S. Haines, N. Li, Y. H. Kim, Y. Chen, R. H. Baughman, Adv. Funct. Mater. 2012, 22, 477.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Le Caër, G. Vigneron, J. Renault, S. Pommeret, Chem. Phys. Lett. 2006, 426, 71.
| Crossref | GoogleScholarGoogle Scholar |
[21] P. Deb, T. Haldar, S. M. Kashid, S. Banerjee, S. Chakrabarty, S. Bagchi, J. Phys. Chem. B 2016, 120, 4034.
| Crossref | GoogleScholarGoogle Scholar | 27090068PubMed |
[22] (a) T. P. Gerasimova, S. A. Katsyuba, Dalton Trans. 2013, 1787.
| Crossref | GoogleScholarGoogle Scholar | 23165737PubMed |
(b) R. Inskeep, J. Inorg. Nucl. Chem. 1962, 24, 763.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) R. R. Ruminski, J. D. Petersen, Inorg. Chim. Acta 1984, 88, 63.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Yamasaki, Bull. Chem. Soc. Jpn. 1937, 12, 390.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) J. J. Alexander, H. B. Gray, J. Am. Chem. Soc. 1968, 90, 4260.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. B. Gray, N. Beach, J. Am. Chem. Soc. 1963, 85, 2922.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Radha, P. V. Kamath, Bull. Mater. Sci. 2013, 36, 923.
| Crossref | GoogleScholarGoogle Scholar |