Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthetic Studies on the Marine-Derived Sesquiterpene (+)-Viridianol: Divergent Behaviour of Two Structurally Related, Ring-Fused Cyclopropanes Under the Same Hydrogenolytic Conditions

Benoit Bolte A , Fei Tang A , Ping Lan A , Anthony C. Willis A and Martin G. Banwell A B
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.

B Corresponding author. Email: Martin.Banwell@anu.edu.au

Australian Journal of Chemistry 72(4) 305-310 https://doi.org/10.1071/CH18532
Submitted: 26 October 2018  Accepted: 11 December 2018   Published: 24 January 2019

Abstract

Hydrogenolytic cleavage of the ring-fused cyclopropane 11 using hydrogen in the presence of platinum oxide afforded the gem-dimethylated cyclohexane 12 in 99 % yield. In contrast, analogous treatment of congener 13 afforded only trace amounts of the targeted and gem-dimethylated sesquiterpene (+)-viridianol (1), the major products of reaction now being the vic-dimethylated compound 14 and the 2-fold ring-cleavage product 15.


References

[1]     (a) R. Chizzola, in Natural Products (Eds K. G. Ramawat, J. M. Mérillon) 2013, Ch. 96, pp. 2974–3008 (Springer: Berlin).
      (b) F. Le Bideau, M. Kousara, L. Chen, L. Wei, F. Dumas, Chem. Rev. 2017, 117, 6110.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A linear arrangements of such rings is seen in the sterpurenes (see P. Lan, M. G. Banwell, A. C. Willis, Org. Lett. 2015, 17, 166 and references cited therein) while an angular arrangement of them is encountered in the protoilludanes (see M. T. Hovey, D. T. Cohen, D. M. Walden, P. H.-Y. Cheong, K. A. Scheidt, Angew. Chem. Int. Ed., 2017, 56, 9864 and references cited therein).

[3]  M. Norte, J. J. Fernández, M. L. Souto, Tetrahedron Lett. 1994, 35, 4607.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J.-H. Ding, T. Feng, Z.-H. Li, X.-Y. Yang, H. Guo, X. Yin, G.-Q. Wang, J.-K. Liu, Org. Lett. 2012, 14, 4976.
         | Crossref | GoogleScholarGoogle Scholar | 22953776PubMed |

[5]  F. Tang, P. Lan, B. Bolte, M. G. Banwell, J. S. Ward, A. C. Willis, J. Org. Chem. 2018, 83, 14049.
         | Crossref | GoogleScholarGoogle Scholar | 30359031PubMed |

[6]  D. R. Boyd, N. D. Sharma, M. V. Hand, M. R. Groocock, N. A. Kerley, H. Dalton, J. Chima, G. N. Sheldrake, J. Chem. Soc. Chem. Commun. 1993, 974.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) For reviews on the production and synthetic applications of microbially-derived cis-1,2-dihydrocatechols, see: R. A. Johnson, Org. React. 2004, 63, 117.
      (b) T. Hudlicky, J. W. Reed, Synlett 2009, 685.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. E. Lewis, Chem. Commun. 2014, 50, 2821.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. S. Taher, M. G. Banwell, J. N. Buckler, Q. Yan, P. Lan, Chem. Rec. 2018, 18, 239.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. G. Banwell, D. J.-Y. D. Bon, in Molecular Rearrangements in Organic Synthesis (Ed. C. M. Rojas) 2015, Ch. 9, pp. 261–288 (Wiley: Hoboken, NJ).

[9]  One protocol we investigated without success was that reported by Parnes et al. (Z. N. Parnes, G. I. Bolestova, I. S. Akhrem, J. Chem. Soc., Chem. Commun. 1980, 748). During the course of our work in the area Baran et al. reported a protocol that proved effective and a variation on this enabled the preparation of a clean sample of (+)-viridianol (H. T. Dao, C. Li, Q. Michaudel, B. D. Maxwell, P. S. Baran, J. Am. Chem. Soc. 2015, 137, 8046).

[10]  (a) J. Newham, Chem. Rev. 1963, 63, 123.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. T. To, K. S. Chan, Tetrahedron Lett. 2016, 57, 4664.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. T. Talele, J. Med. Chem. 2018, 61, 2166. and references cited therein
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J.-P. Deprés, P. Delair, J.-F. Poisson, A. Kanazawa, A. E. Greene, Acc. Chem. Res. 2016, 49, 252.
         | Crossref | GoogleScholarGoogle Scholar | 26807483PubMed |

[12]  J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  D. J. Tao, Y. Slutskyy, L. E. Overman, J. Am. Chem. Soc. 2016, 138, 2186.
         | Crossref | GoogleScholarGoogle Scholar | 26880210PubMed |

[14]  G. S. Jones, Tetrahedron Lett. 1994, 35, 9685.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  CrysAlis PRO Version 1.171.37.33d (release 23/04/2014 CrysAlis171.NET) (compiled Apr 23 2014, 17:37:27) (Agilent Technologies: Oxfordshire, UK).

[18]  A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.

[19]  P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
         | Crossref | GoogleScholarGoogle Scholar |