Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Structural Investigation of Some Electron-Rich Nitroaromatics

Jonathan M. White A D , Colin E. Skene A , John Deadman B , Ruwan Epa B , Sarah Foenander A , Kyle Hamer A , Thomas Fellowes A , Shea Fern Lim A , Sebastian M. Marcuccio B and Roger F. Martin C
+ Author Affiliations
- Author Affiliations

A School of Chemistry and BIO-21 Institute, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Advanced Molecular Technologies Pty Ltd, Unit 1, 7-11 Rocco Drive, Scoresby, Vic. 3179, Australia.

C Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Vic. 3000, Australia.

D Corresponding author. Email: whitejm@unimelb.edu.au

Australian Journal of Chemistry 72(4) 311-327 https://doi.org/10.1071/CH18523
Submitted: 23 October 2018  Accepted: 16 December 2018   Published: 30 January 2019

Abstract

2,4-Difluoro-, 2,4,6-trifluoro-, and 2,3,4,6,tetrafluoronitrobenzenes undergo nucleophilic aromatic substitution, once, twice, and three times with a variety of amine substituents with a high degree of regiochemical control to provide a range of electron-rich nitrobenzene derivatives. In these structures the nitro group proves a useful structural probe to reveal the varying extents of electron donation from the varying number of amino substituents onto the nitro group as revealed by accurate low temperature X-ray crystal structure analysis, thus increasing electron donation manifests in a decrease in the Ar–NO2 distance consistent with increased double bond character, while the N–O bond distance increases as the oxygens accept the electron density. The effect of delocalization of the aniline nitrogen lone pair onto the nitro group impacts on the geometry and hybridization of the nitrogen substituent and also impacts on the ability of the nitrogen lone pair electrons to participate in other competing electronic interactions, such as the nNσ*C–S anomeric effect as demonstrated by the thiazolidine substituted derivatives 3c, 4c, and 6c.


References

[1]  R. F. Martin, S. Broadhurst, M. E. Reum, C. J. Squire, G. R. Clark, P. N. Lobachevsky, J. M. White, C. Clark, D. Sy, M. Spotheim-Maurizot, D. P. Kelly, Cancer Res. 2004, 64, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 14871839PubMed |

[2]  M. E. Sitzmann, J. Org. Chem. 1978, 43, 1241.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  G. Selivanova, Zh. Org. Khim. 1988, 24, 2513.

[4]  S. K. Sythana, S. R. Naramreddy, S. Kavitake, V. Kumar, P. R. Bhagat, Org. Process Res. Dev. 2014, 18, 912.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry 2006 (University Science Books: Herndon, VA).

[6]  Cambridge Crystallographic Database Version 1.21: C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 2016, B72, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L.-J. Wang, W.-W. Li, S.-Y. Yang, Acta Crystallogr. Sect. E 2012, 68, o1235.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. W. Ng, Chem. Phys. 2009, 355, 194.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) M. Tonogaki, T. Kawata, S. Ohba, Y. Iwata, I. Shibuya, Acta Crystallogr. Sect. B 1993, 49, 1031.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) I. V. Anayev, K. A. Lyssenko, Izv. Akad. Nauk. SSSR, Ser Khim. (Russ) (Russ. Chem. Bull.) 2014, 1270.

[10]  J. M. White, T. Fellowes, CSD Communication (Private communication) 2016, Refcode: YAYCIM01.

[11]  S. W. Ng, Chem. Phys. 2009, 355, 194.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Tonogaki, T. Kawata, S. Ohba, Y. Iwata, I. Shibuya, Acta Crystallogr. Sect. B 1993, B49, 1031.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. R. Cargill, G. Sandford, A. J. Tadeusiak, D. S. Yufit, J. A. K. Howard, P. Kilickiran, G. Nelles, J. Org. Chem. 2010, 75, 5860.
         | Crossref | GoogleScholarGoogle Scholar | 20704342PubMed |

[14]  J. M. White, K. Morgan, C. E. Skene, CSD Communication (Private communication) 2016, Refcode: EWILAZ.

[15]  J. M. White, K. Hamer, C. E. Skene, CSD Communication (Private communication) 2014, Refcode: KOXTAU.

[16]  (a) G. Gilli, F. Belluchi, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc. 1989, 111, 1023.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. Zych, T. Misiaszek, M. M. Szostak, Chem. Phys. 2007, 340, 260.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. V. Omelchenko, O. V. Shishkin, L. Gorb, F. C. Hill, J. Leszczynski, Struct. Chem. 2012, 23, 1585.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D.-C. Zhang, Y.-Q. Zhang, J. Energ. Mater. 1997, 15, 205.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen 1983 (Springer Verlag: New York, NY).

[18]  N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
         | Crossref | GoogleScholarGoogle Scholar | 25537608PubMed |

[19]  G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. C. Finger, F. H. Reed, J. L. Finnerty, J. Am. Chem. Soc. 1951, 73, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  G. A. Selivanova, T. V. Chuikova, A. A. Shtark, V. D. Shteingarts, Zh. Org. Khim 1988, 24, 2513.

[24]  C. W. Tornøe, M. Rottlaender, D. R. Greve, N. Khanzhin, A. Ritzen, W. P. Watson, WO 2006/029623 A1, Substituted aniline derivatives.

[25]  C. W. Tornøe, M. Rottlaender, N. Khanzhin, A. Ritzen, W. P. Watson, WO 2005/087754 A1, Substituted morpholine and thiomorpholine derivatives.

[26]  A. G. O′Brien, Z. Horvath, F. Levesque, J. W. Lee, A. Seidel-Morgenstern, P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 7028.
         | Crossref | GoogleScholarGoogle Scholar |