Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Study of Phenothiazine Organic Dyes with Different Spacers for Dye-Sensitised Solar Cells

Ihssène Ouared A C , Mâammar Rekhis A and Mohamed Trari B
+ Author Affiliations
- Author Affiliations

A Theoretical Chemistry and Computational Photonics Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111 Algiers, Algeria.

B Storage and Utilization of Renewable Energy Laboratory, Faculty of Chemistry, Houari Boumediene Sciences and Technology University, BP 32 El Alia, 16111 Algiers, Algeria.

C Corresponding author. Email: ihssen_ouared@hotmail.fr

Australian Journal of Chemistry 72(4) 244-251 https://doi.org/10.1071/CH18449
Submitted: 8 September 2018  Accepted: 24 November 2018   Published: 3 January 2019

Abstract

In this paper, six organic dyes have been studied by density functional theory (DFT). The electron-acceptor group is the cyanoacrylic acid unit for all sensitisers, and the electron-donor unit is a phenothiazine (PTZ) fragment substituted by an ethynyl-pyrene unit; the π-linker was varied, and the influence was investigated. The dye bearing the divinylthiophene linker showed the highest absorption maximum. The theoretical photovoltaic properties revealed that the overall efficiency of the solar cell could be remarkably improved using the designed dyes. The results indicated that all of the studied organic dyes are good candidates as photosensitisers for dye-sensitised solar cells (DSSCs).


References

[1]  M. Grätzel, J. Photochem. Photobiol. Chem. 2004, 164, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. R. Narayan, Renew. Sustain. Energy Rev. 2012, 16, 208.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  I. N. Obotowo, I. B. Obot, U. J. Ekpe, J. Mol. Struct. 2016, 1122, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Suhaimi, M. M. Shahimin, Z. A. Alahmed, J. Chyský, A. H. Reshak, Int. J. Electrochem. Sci. 2015, 10, 2859.

[6]  A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. Fitri, A. T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, M. Bouachrine, J. Mater. Environ. Sci. 2016, 7, 834.

[8]  S. Ramkumar, P. Manidurai, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 425.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. Qin, Q. Peng, Int. J. Photoenergy 2012, 2012, 291579.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  L. H. Han, C. R. Zhang, J. W. Zhe, N. Z. Jin, Y. L. Shen, W. Wang, J. J. Gong, Y. H. Chen, Z. J. Liu, Int. J. Mol. Sci. 2013, 14, 20171.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K. S. Henry, K. S. Abrams, J. Forst, M. J. Mender, E. G. Neilans, F. Idrobo, L. H. Carney, J. Assoc. Res. Otolaryngol. 2017, 18, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Zhang, X. Yang, Y. Numata, L. Han, Energy Environ. Sci. 2013, 6, 1443.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J. T. Lin, J. Mater. Chem. 2012, 22, 8734.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  X. Ren, S. Jiang, M. Cha, G. Zhou, Z. S. Wang, Chem. Mater. 2012, 24, 3493.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. Cui, Y. Wu, X. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. Zhu, Z.-S. Wang, Chem. Mater. 2011, 23, 4394.

[16]  X. F. Lu, Q. Y. Feng, T. Lan, G. Zhou, Z. S. Wang, Chem. Mater. 2012, 24, 3179.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 2009, 48, 2474.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, A. Hagfeldt, Nat. Photonics 2017, 11, 372.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. K. Eom, J. Y. Hong, J. Kim, H. K. Kim, Dyes Pigm. 2017, 136, 496.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  K.-W. Park, S. Ahn, M. H. Baek, D.-S. Lim, A. Wiles, M. G. Kim, J. Hong, D. Coplanar, Mater. Express 2017, 7, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  P. Li, Y. Cui, C. Song, H. Zhang, Dyes Pigm. 2017, 137, 12.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  V. Sugathan, E. John, K. Sudhakar, Renew. Sustain. Energy Rev. 2015, 52, 54.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. Namuangruk, S. Jungsuttiwong, N. Kungwan, V. Promarak, T. Sudyoadsuk, B. Jansang, M. Ehara, Theor. Chem. Acc. 2016, 135, 14.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. Chitpakdee, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, N. Kungwan, S. Namuangruk, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 174, 7.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, L. Sun, Chem. Commun. 2007, 3741.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, M. Grätzel, J. Mater. Chem. 2012, 22, 889.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Z. S. Huang, H. Meier, D. Cao, J. Mater. Chem. C 2016, 4, 2404.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. Liang, Y. Yuan, D. Wang, Z. Zhong, J. Xu, Monatsh. Chem. 2014, 145, 1737.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. Mao, X. L. Zhang, X. Q. Fang, G. H. Wu, S. Y. Dai, Q. H. Song, X. X. Zhang, J. Power Sources 2014, 268, 965.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  G. Marotta, M. A. Reddy, S. P. Singh, A. Islam, L. Han, F. De Angelis, M. Pastore, M. Chandrasekharam, ACS Appl. Mater. Interfaces 2013, 5, 9635.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  H. H. Gao, X. Qian, W. Y. Chang, S. S. Wang, Y. Z. Zhu, J. Y. Zheng, J. Power Sources 2016, 307, 866.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Z. Wan, C. Jia, Y. Wang, J. Luo, X. Yao, Org. Electron. 2015, 27, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  A. Baheti, K. R. Justin Thomas, C. T. Li, C. P. Lee, K. C. Ho, ACS Appl. Mater. Interfaces 2015, 7, 2249.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Z. Wan, C. Jia, Y. Duan, L. Zhou, J. Zhang, Y. Lin, Y. Shi, RSC Adv. 2012, 2, 4507.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Hua, S. Chang, D. Huang, X. Zhou, X. Zhu, J. Zhao, T. Chen, W.-Y. Wong, W.-K. Wong, Chem. Mater. 2013, 25, 2146.

[36]  Z. Iqbal, W. Q. Wu, H. Zhang, P. L. Hua, X. Fang, D. Bin Kuang, L. Wang, H. Meier, D. Cao, Dyes Pigm. 2013, 99, 299.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Z. Iqbal, W. Q. Wu, D. Bin Kuang, L. Wang, H. Meier, D. Cao, Dyes Pigm. 2013, 96, 722.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, D. Raghavachari, J. Mater. Chem. A 2017, 5, 10289.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. K. Biswas, A. Das, B. Ganguly, Phys. Chem. Chem. Phys. 2015, 17, 31093.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. El Assyry, A. Hallaoui, R. Saddik, N. Benchat, B. Benali, A. Zarrouk, Pharm. Lett. 2015, 7, 295.

[41]  R. Katoh, A. Furube, J. Photochem. Photobiol. C 2014, 20, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. Gong, J. Liang, K. Sumathy, Renew. Sustain. Energy Rev. 2012, 16, 5848.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  W. Sang-Aroon, S. Saekow, V. Amornkitbamrung, J. Photochem. Photobiol. Chem. 2012, 236, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  A. El Assyry, R. Jdaa, B. Benali, M. Addou, A. Zarrouk, J. Mater. Environ. Sci. 2015, 6, 2612.

[45]  Y. Li, Y. Li, P. Song, F. Ma, J. Liang, M. Sun, RSC Adv. 2017, 7, 20520.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. Xie, J. Wang, H.-Q. Xia, F.-Q. Bai, R. Jia, J.-G. Rim, H.-X. Zhang, RSC Adv. 2015, 5, 33653.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  O. Ninis, R. Kacimi, H. Bouaamlat, M. Abarkan, M. Bouachrine, J. Mater. Environ. Sci. 2017, 8, 2572.

[48]  I. Mellah, J. Pharm. Chem. Biol. Sci. 2017, 5, 23.

[49]  A. Hagfeldt, M. Grätzel, Chem. Rev. 1995, 95, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  J. Zhang, Y.-H. Kan, H.-B. Li, Y. Geng, Y. Wu, Z.-M. Su, Dyes Pigm. 2012, 95, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01 2016 (Gaussian, Inc.: Wallingford, CT).

[52]  See pp. 611–612 in: R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules 1989 (Oxford University Press: New York, NY).

[53]  W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory 2001 (Wiley-VCH Verlag GmbH: Weinheim).

[54]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  W. Koho, L. J. Sham, Phys. Rev. 1965, 140, 1133.

[57]  W. J. Hehre, Acc. Chem. Res. 1976, 9, 399.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  M. Pastore, E. Mosconi, F. De Angelis, M. Grätzel, J. Phys. Chem. C 2010, 114, 7205.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  J. Zhang, H.-B. Li, S.-L. Sun, Y. Geng, Y. Wu, Z.-M. Su, J. Mater. Chem. 2012, 22, 568.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  P. Guo, R. Ma, L. Guo, L. Yang, J. Liu, X. Zhang, X. Pan, S. Dai, J. Mol. Graph. Model. 2010, 29, 498.
         | Crossref | GoogleScholarGoogle Scholar |