Highly Crystalline Zinc Oxide/Mesoporous Hollow Silica Composites Synthesized at Low Temperature for the Photocatalytic Degradation of Sodium Dodecylbenzenesulfonate
Parisa Pourdayhimi A , Pei Wen Koh A , Hadi Nur B C and Siew Ling Lee A B DA Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
B Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
C Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, State University of Malang, Malang 65145, Indonesia.
D Corresponding author. Email: sllee@ibnusina.utm.my
Australian Journal of Chemistry 72(4) 252-259 https://doi.org/10.1071/CH18175
Submitted: 18 April 2018 Accepted: 4 December 2018 Published: 21 January 2019
Abstract
Highly crystalline ZnO/mesoporous hollow silica sphere (MHSS) composites have been successfully synthesized through an impregnation method at 323 K without applying calcination. Three composites of different Zn/Si molar ratios of 1 : 2, 1 : 1, and 2 : 1 were prepared. X-Ray diffraction patterns confirmed the presence of highly crystalline ZnO in the materials. A layer of ZnO was formed on the MHSS as evidenced by field emission scanning electron microscopy analysis. Transmission electron microscopy analysis verified the mesoporous structure in ZnO/MHSS composites. N2 adsorption–desorption analysis indicated a type IV isotherm for 1ZnO/2MHSS and 1ZnO/1MHSS samples, confirming the presence of mesopores in the ZnO layer. It has been demonstrated that all the ZnO/MHSS composites exhibit a high photocatalytic activity towards sodium dodecylbenzenesulfonate degradation compared with bare ZnO under UV irradiation. A kinetic study showed that the photodegradation followed a second order model. Among the prepared composites, 1ZnO/1MHSS recorded the highest reaction rate of 6.03 × 10−3 mM−1 min−1 which is attributed to a high crystallinity and the monodispersity of a high amount of ZnO on MHSS.
References
[1] H. Hidaka, S. Yamada, S. Suenaga, H. Kubota, N. Serpone, E. Pelizzetti, M. Gratzel, J. Photochem. Photobiol. Chem. 1989, 47, 103.| Crossref | GoogleScholarGoogle Scholar |
[2] N. N. Rao, S. Dube, J. Mol. Catal. Chem. 1996, 104, L197.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. Maryami, R. K. Tjoktronegoro, W. Suratno, S. Rochani, Third International Conference on Mathematics and Natural Sciences (ICMNS 2010) 2010, Indonesia.
[4] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. W. Koh, M. H. M. Hatta, S. T. Ong, L. Yuliati, S. L. Lee, J. Photochem. Photobiol. Chem. 2017, 332, 215.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Mostoni, V. Pifferi, L. Falciola, D. Meroni, E. Pargoletti, E. Davoli, G. Cappelletti, J. Photochem. Photobiol. Chem. 2017, 332, 534.
| Crossref | GoogleScholarGoogle Scholar |
[7] T. Jin, D. Sun, H. Zhang, H.-J. Sue, in Nanotoxicity (Eds S. C. Sahu, D. A. Casciano) 2009, pp. 81–95 (John Wiley & Sons, Ltd: Chichester).
[8] M. Elimelech, J. Gregory, X. Jia, R. A. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation 2013 (Butterworth-Heinemann: Oxford).
[9] L. Jiang, L. Gao, Mater. Chem. Phys. 2005, 91, 313.
[10] D. Kibanova, M. Trejo, H. Destaillats, J. Cervini-Silva, Appl. Clay Sci. 2009, 42, 563.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. Taghavimoghaddam, G. P. Knowles, A. L. Chaffee, J. Mol. Catal. Chem. 2012, 358, 79.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Aguado, R. v. Grieken, M.-J. López-Muñoz, J. Marugán, Appl. Catal. A 2006, 312, 202.
| Crossref | GoogleScholarGoogle Scholar |
[13] Y. K. Ooi, L. Yuliati, S. L. Lee, Chin. J. Chem. 2016, 37, 1871.
[14] Y. K. Ooi, L. Yuliati, D. Hartanto, H. Nur, S. L. Lee, Microporous Mesoporous Mater. 2016, 225, 411.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. C. Me, H. Nur, S. L. Lee, Malaysian Journal of Fundamental and Applied Sciences 2015, 11, 122.
[16] C. Cannas, M. Mainas, A. Musinu, G. Piccaluga, Compos. Sci. Technol. 2003, 63, 1187.
| Crossref | GoogleScholarGoogle Scholar |
[17] Q. Lu, Z. Wang, J. Li, P. Wang, X. Ye, Nanoscale Res. Lett. 2009, 4, 646.
| Crossref | GoogleScholarGoogle Scholar | 20596369PubMed |
[18] O. Hamid, M. A. Chari, C. V. Nguyen, J. E. Chen, S. M. Alshehri, E. Yanmaz, M. S. A. Hossain, Y. Yamauchi, K. C.-W. Wu, Catal. Commun. 2017, 90, 111.
| Crossref | GoogleScholarGoogle Scholar |
[19] T. R. Giraldi, G. V. Santos, V. R. Mendonça, C. Ribeiro, I. T. Weber, J. Nanosci. Nanotechnol. 2011, 11, 3635.
| Crossref | GoogleScholarGoogle Scholar | 21776748PubMed |
[20] M. Thirumavalavan, K.-L. Huang, J.-F. Lee, Materials 2013, 6, 4198.
| Crossref | GoogleScholarGoogle Scholar | 28788326PubMed |
[21] A. Moballegh, H. R. Shahverdi, R. Aghababazadeh, A. R. Mirhabibi, Surf. Sci. 2007, 601, 2850.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Ye, R. Zhou, C. Zheng, Q. Sun, Y. Lv, C. Li, X. Hou, Microchem. J. 2012, 100, 61.
| Crossref | GoogleScholarGoogle Scholar |
[23] O. Verho, H. Zheng, K. P. J. Gustafson, A. Nagendiran, X. Zou, J.-E. Bäckvall, ChemCatChem 2016, 8, 773.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. Wang, C. Liu, L. Tong, J. Li, R. Luo, J. Qi, Y. Li, L. Wang, RSC Adv. 2015, 5, 69593.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. Pourdayhimi, P. W. Koh, M. M. Salleh, H. Nur, S. L. Lee, Aust. J. Chem. 2016, 69, 790.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang, B. Yang, Mater. Lett. 2007, 61, 363.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. Guo, P. Diao, S. Cai, J. Solid State Chem. 2005, 178, 1864.
| Crossref | GoogleScholarGoogle Scholar |
[28] Z.-j. Wang, Y. Xie, C.-j. Liu, J. Phys. Chem. C 2008, 112, 19818.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Guo, H. Qian, S. Sun, D. Sun, H. Yin, X. Cai, Z. Liu, J. Wu, T. Jiang, X. Liu, Chem. Cent. J. 2011, 5, 1.
| Crossref | GoogleScholarGoogle Scholar | 21208421PubMed |
[30] M. Najafi, Y. Yousefi, A. A. Rafati, Separ. Purif. Tech. 2012, 85, 193.
| Crossref | GoogleScholarGoogle Scholar |
[31] M. D. Donohue, G. L. Aranovich, Adv. Colloid Interface Sci. 1998, 76–77, 137.
| Crossref | GoogleScholarGoogle Scholar |
[32] P. L. Llewellyn, U. Ciesla, H. Decher, R. Stadler, F. Schuth, K. K. Unger, Stud. Surf. Sci. Catal. 1994, 84, 2013.
| Crossref | GoogleScholarGoogle Scholar |
[33] Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong, Microporous Mesoporous Mater. 2005, 84, 218.
| Crossref | GoogleScholarGoogle Scholar |
[34] L. L. Lv, W. H. Geng, C. Wang, Z. Y. Xie, Y. J. Zhao, Y. Guan, X. D. Bai, L. G. Sun, Adv. Mat. Res. 2013, 668, 207.
[35] J. Coates, in Encyclopedia of Analytical Chemistry (Ed. R. A. Meyers) 2000, pp. 10815–10837 (John Wiley & Sons, Ltd: Chichester).
[36] C. P. Sibu, S. R. Kumar, P. Mukundan, K. G. K. Warrier, Chem. Mater. 2002, 14, 2876.
| Crossref | GoogleScholarGoogle Scholar |
[37] R. Georgekutty, M. K. Seery, S. C. Pillai, J. Phys. Chem. C 2008, 112, 13563.
| Crossref | GoogleScholarGoogle Scholar |
[38] H.-L. Xia, F.-Q. Tang, J. Phys. Chem. B 2003, 107, 9175.
| Crossref | GoogleScholarGoogle Scholar |
[39] E. G. Pantohan, R. T. Candidato, R. M. Vequizo, J. Appl. Sci. Agric. 2014, 9, 389.
[40] A. K. Zak, M. E. Abrishami, W. H. A. Majid, R. Yousefi, S. M. Hosseini, Ceram. Int. 2011, 37, 393.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. Öztas, Chin. Phys. Lett. 2008, 25, 4090.
| Crossref | GoogleScholarGoogle Scholar |
[42] J. S. Reed, Introduction to the Principles of Ceramic Processing 1986 (John Wiley & Sons: New York, NY).
[43] G. A. Parks, Chem. Rev. 1965, 65, 177.
| Crossref | GoogleScholarGoogle Scholar |
[44] P. S. Bedi, A. Kaur, World J. Pharm. Pharm. Sci. 2015, 4, 1177.
[45] A. Degen, M. Kosee, J. Eur. Ceram. Soc. 2000, 20, 667.
| Crossref | GoogleScholarGoogle Scholar |
[46] P.-S. Keng, S.-L. Lee, S.-T. Ha, Y.-T. Hung, S.-T. Ong, in Green Materials for Energy, Products and Depollution (Eds E. Lichtfouse, J. Schwarzbauer, D. Robert) 2013, pp. 335–414 (Springer: Dordrecht).