Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Graphene–Magnetic Spinel Ferrite Nanocomposite: Facile Synthesis and Excellent Photocatalytic Performance

Yuhang Wang A B , Hongxia Yan A and Qiuyu Zhang A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an, 710129, China.

B Department of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi’an, 710100, China.

C Corresponding author. Email: qyzhang1803@gmail.com

Australian Journal of Chemistry 72(4) 267-275 https://doi.org/10.1071/CH18432
Submitted: 29 August 2018  Accepted: 6 December 2018   Published: 5 February 2019

Abstract

Spinel ferrite structured ZnFe2O4 nanoparticles anchored on reduced graphene oxide (rGO) sheets have been prepared via a facile hydrothermal method combined with a solvothermal approach. For the synthesis of the ZnFe2O4/rGO nanocomposites, the rGO nanosheet contains epoxy functional groups serving as the active sites, which allowed the formation of uniform ZnFe2O4 nanoparticles. Due to the structure of the ZnFe2O4/RGO nanocomposites, the aggregation of the ZnFe2O4 nanoparticles can be readily disrupted and electronic transfer through the rGO nanosheets is accelerated. This could in turn enhance the photocatalytic efficiency. It was also demonstrated that ZnFe2O4/rGO (40 wt-%) hybrid nanocomposites almost reached adsorption equilibrium in the RhB dye within 60 min. The Langmuir equation model showed that the photodegradation of RhB was well fitted to first order reaction kinetics with k = 0.6254 min−1. This illustrated that the addition of GO could reduce the bandgap of pure ZnFe2O4, which avoided the combination of electrons and holes. The ZnFe2O4/rGO nanocomposites could also enhance the utilisation of sunlight. In addition, the ZnFe2O4/rGO nanocomposite photocatalyst also demonstrated a supramagnetic property, holding potential to be utilised for water treatment.


References

[1]  X. Bai, C. Sun, D. Liu, X. Luo, D. Li, J. Wang, N. Wang, X. Chang, R. Zong, Y. Zhu, Appl. Catal. B 2017, 204, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A. Mohamed, S. Yousef, M. A. Abdelnaby, T. A. Osman, B. Hamawandi, M. S. Toprak, M. Muhammed, A. Uheida, Separ. Purif. Tech. 2017, 182, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  B. Jiang, C. Han, B. Li, Y. He, Z. Lin, ACS Nano 2016, 10, 2728.
         | Crossref | GoogleScholarGoogle Scholar | 26786214PubMed |

[4]  L. Han, X. Zhou, L. Wan, Y. Deng, S. Zhan, J. Environ. Chem. Eng. 2014, 2, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, Ceram. Int. 2016, 42, 2741.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  G. Song, X. Wu, F. Xin, X. Yin, J. Nanosci. Nanotechnol. 2017, 17, 2438.
         | Crossref | GoogleScholarGoogle Scholar | 29648748PubMed |

[7]  H. Chen, W. Liu, Z. Qin, Catal. Sci. Technol. 2017, 7, 2236.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. Hussain, S. Hussain, A. Waleed, M. M. Tavakoli, S. Yang, M. K. Rauf, Z. Fan, M. A. Nadeem, J. Phys. Chem. C 2017, 121, 18360.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Yu, L. Wei, J. Chen, Y. Xie, W. Zhou, Q. Fan, Ind. Eng. Chem. Res. 2014, 53, 5759.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  X. Guo, H. Zhu, Q. Li, Appl. Catal. B 2014, 160–161, 408.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. Miao, S. Ji, G. Xu, G. Liu, L. Zhang, C. Ye, ACS Appl. Mater. Interfaces 2012, 4, 4428.
         | Crossref | GoogleScholarGoogle Scholar | 22803694PubMed |

[12]  Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, J.-B. Xu, ACS Nano 2017, 11, 430.
         | Crossref | GoogleScholarGoogle Scholar | 28005326PubMed |

[13]  G. Argentero, A. Mittelberger, M. Reza Ahmadpour Monazam, Y. Cao, T. J. Pennycook, C. Mangler, C. Kramberger, J. Kotakoski, A. K. Geim, J. C. Meyer, Nano Lett. 2017, 17, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 28140602PubMed |

[14]  C. P. Ewels, X. Rocquefelte, H. W. Kroto, M. J. Rayson, P. R. Briddon, M. I. Heggie, Proc. Natl. Acad. Sci. USA 2015, 112, 15609.
         | 26644554PubMed |

[15]  A. C. Ferrari, F. Bonaccorso, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.-H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwanderaq, J. Kinaret, Nanoscale 2015, 7, 4598.
         | Crossref | GoogleScholarGoogle Scholar | 25707682PubMed |

[16]  X. Ma, G. Ning, C. Qi, C. Xu, J. Gao, ACS Appl. Mater. Interfaces 2014, 6, 14415.
         | Crossref | GoogleScholarGoogle Scholar | 25105538PubMed |

[17]  W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, L. F. Francis, Adv. Mater. 2015, 27, 109.
         | Crossref | GoogleScholarGoogle Scholar | 25377870PubMed |

[18]  F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347, 1246501.
         | Crossref | GoogleScholarGoogle Scholar | 25554791PubMed |

[19]  Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Z. Lin, H. J. Fan, F. Kang, C.-P. Wong, C. Yang, Energy Environ. Sci. 2017, 10, 941.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  H. Kim, S. O. Kang, S. Park, H. S. Park, J. Ind. Eng. Chem. 2015, 21, 1191.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. Kashinath, K. Namratha, S. Srikantaswamy, A. Vinu, K. Byrappa, New J. Chem. 2017, 41, 1723.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  L. Shahriary, A. A. Athawale, Int. J. Renew. Energy Environ. Eng. 2014, 2, 58.

[23]  S. Wu, P. Wang, Y. Cai, D. Liang, Y. Ye, Z. Tian, J. Liu, C. Liang, RSC Adv. 2015, 5, 9069.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  D. Liang, C. Cui, H. Hu, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu, H. Shen, J. Alloys Compd. 2014, 582, 236.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  X. Peng, L. Zhang, Y. Chen, F. Li, W. Zhou, Appl. Surf. Sci. 2010, 256, 2948.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  X. Chen, Y. Dai, J. Guo, T. Liu, X. Wang, Ind. Eng. Chem. Res. 2016, 55, 568.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Feng, Y. Wang, Y. Hou, L. Li, J. Nanopart. Res. 2017, 19, 178.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. H. Mady, M. L. Baynosa, D. Tuma, J.-J. Shim, Appl. Catal. B 2017, 203, 416.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Z. Yang, Y. Wan, G. Xiong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo, Mater. Res. Bull. 2015, 61, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  O. Akhavan, A. Meidanchi, E. Ghaderi, S. Khoei, J. Mater. Chem. B 2014, 2, 3306.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A. Meidanchi, O. Akhavan, Carbon 2014, 69, 230.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Z. W. Yang, Y. Z. Wan, G. Y. Xiong, D. Y. Li, Q. P. Li, C. Y. Ma, R. S. Guo, H. L. Luo, Mater. Res. Bull. 2015, 61, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  T. Som, G. V. Troppenz, R. Wendt, M. Wollgarten, J. Rappich, F. Emmerling, K. Rademann, ChemSusChem 2014, 7, 854.
         | Crossref | GoogleScholarGoogle Scholar | 24578169PubMed |

[34]  Y.-H. Si, Y. Xia, S.-K. Shang, X.-B. Xiong, X.-R. Zeng, J. Zhou, Y.-Y. Li, Nanomaterials 2018, 8, 526.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  D. Xu, B. Cheng, S. Cao, J. Yu, Appl. Catal. B 2015, 164, 380.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. F. M. Noh, M. F. Soh, C. H. Teh, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, M. A. M. Teridi, Sol. Energy 2017, 158, 474.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  J. J. M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, ACS Catal. 2017, 7, 2644.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. Liu, G. Liu, C. Yuan, L. Chen, X. Tian, M. Fang, New J. Chem. 2018, 42, 3736.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  H. An, X. He, J. Li, L. Zhao, C. Chang, S. Zhang, W. Huang, New J. Chem. 2015, 39, 4611.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  W. Wang, K. Xiao, L. Zhu, Y. Yin, Z. Wang, RSC Adv. 2017, 7, 21287.
         | Crossref | GoogleScholarGoogle Scholar |