Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electronic Spectra of the Triacetylene Cation (HC6H+) and Protonated Triacetylene (HC6H2+) Tagged with Ar

Ugo Jacovella A , Giel Muller B , Katherine J. Catani A , Nastasia I. Bartlett A and Evan J. Bieske A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Melbourne, Parkville, Vic. 3010, Australia.

B Department of Chemical Engineering, University of Melbourne, Parkville, Vic. 3010, Australia.

C Corresponding author. Email: evanjb@unimelb.edu.au

Australian Journal of Chemistry 72(4) 260-266 https://doi.org/10.1071/CH18508
Submitted: 15 October 2018  Accepted: 5 December 2018   Published: 21 December 2018

Abstract

Polyacetylene cations (HC2nH+) play important roles in combustion processes and in the chemistry of planetary atmospheres and interstellar clouds. Here we report the electronic spectrum for the triacetylene cation (HC6H+) recorded over the 300–610 nm range by photodissociating mass-selected ions tagged with argon atoms in a tandem mass spectrometer. The spectrum shows three band systems that are assigned to CH18508_IE1.gif (origin transition 16 665 cm−1), CH18508_IE2.gif (origin transition 23 916 cm−1), and CH18508_IE3.gif (origin transition 29 920 cm−1). Although the CH18508_IE4.gif band system is well known, the CH18508_IE5.gif and CH18508_IE6.gif band systems are observed for the first time in the gas phase. In addition, the CH18508_IE7.gif electronic spectrum of the protonated triacteylene cation tagged with an argon atom (HC6CH18508_IE8.gif-Ar) is reported, providing the first gas-phase spectrum for this species.


References

[1]  J. H. Kiefer, S. S. Sidhu, R. D. Kern, K. Xie, H. Chen, L. B. Harding, Combust. Sci. Technol. 1992, 82, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. H. Homann, Angew. Chem. Int. Ed. Engl. 1968, 7, 414.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. Fulara, D. Lessen, P. Freivogel, J. P. Maier, Nature 1993, 366, 439.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  F. Shindo, Y. Benilan, J.-C. Guillemin, P. Chaquin, A. Jolly, F. Raulin, Planet. Space Sci. 2003, 51, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. P. Fonfría, J. Cernicharo, M. J. Richter, J. H. Lacy, Astrophys. J. 2011, 728, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. P. Maier, Chem. Soc. Rev. 1997, 26, 21.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. P. Maier, J. Phys. Chem. A 1998, 102, 3462.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. B. Jochnowitz, J. P. Maier, Annu. Rev. Phys. Chem. 2008, 59, 519.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  P. Freivogel, J. Fulara, D. Lessen, D. Forney, J. P. Maier, Chem. Phys. 1994, 189, 335.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Fulara, M. Grutter, J. P. Maier, J. Phys. Chem. A 2007, 111, 11831.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Dzhonson, E. B. Jochnowitz, J. P. Maier, J. Phys. Chem. A 2007, 111, 1887.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  V. E. Bondybey, J. H. English, J. Chem. Phys. 1979, 71, 777.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. M. Smith, J. Agreiter, M. Härtle, C. Engel, V. E. Bondybey, Chem. Phys. 1994, 189, 315.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. L. Sobolewski, L. Adamowicz, J. Chem. Phys. 1995, 102, 394.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Z. Cao, S. D. Peyerimhoff, Phys. Chem. Chem. Phys. 2001, 3, 1403.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. Zhang, X. Guo, Z. Cao, J. Chem. Phys. 2009, 131, 144307.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Klapstein, R. Kuhn, J. P. Maier, M. Ochsner, W. Zambach, J. Phys. Chem. 1984, 88, 5176.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. A. Rice, V. Rudnev, R. Dietsche, J. P. Maier, Astron. J. 2010, 140, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  S. Chakrabarty, C. A. Rice, F. J. Mazzotti, R. Dietsche, J. P. Maier, J. Phys. Chem. A 2013, 117, 9574.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Allan, E. Kloster-Jensen, J. P. Maier, Chem. Phys. 1976, 17, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  W. E. Sinclair, D. Pfluger, H. Linnartz, J. P. Maier, J. Chem. Phys. 1999, 110, 296.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. Pfluger, W. E. Sinclair, H. Linnartz, J. P. Maier, Chem. Phys. Lett. 1999, 313, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  F. Brogli, E. Heilbronner, V. Hornung, E. Kloster-Jensen, Helv. Chim. Acta 1973, 56, 2171.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. Batalov, J. Fulara, I. Shnitko, J. P. Maier, J. Phys. Chem. A 2006, 110, 10404.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Dzhonson, E. B. Jochnowitz, E. Kim, J. P. Maier, J. Chem. Phys. 2007, 126, 044301.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  R. Raghunandan, F. J. Mazzotti, J. P. Maier, J. Am. Soc. Mass Spectrom. 2010, 21, 694.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Jiang, C. Wang, J. Li, X. Guo, J. Zhang, Spectrochim. Acta Part A 2009, 74, 1090.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. A. Wild, E. J. Bieske, Int. Rev. Phys. Chem. 2003, 22, 129.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  V. Dryza, N. Chalyavi, J. Sanelli, E. Bieske, J. Chem. Phys. 2012, 137, 204304.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  V. Dryza, J. A. Sanelli, E. G. Robertson, E. J. Bieske, J. Phys. Chem. A 2012, 116, 4323.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  N. Chalyavi, V. Dryza, J. A. Sanelli, E. J. Bieske, J. Chem. Phys. 2013, 138, 224307.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision B.01 2016 (Gaussian Inc.: Wallingford, CT).

[33]  U. Jacovella, F. Merkt, Phys. Chem. Chem. Phys. 2017, 19, 23524.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  G. Herzberg, Molecular Spectra and Molecular Structure, Volume III: Electronic Spectra and Electronic Structure of Polyatomic Molecules, 2nd edn 1966 (Van Nostrand Reinhold Company: New York, NY).