Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Mixed Magnetic Property of Co0.76Cu0.74[Fe(CN)6]·7.5H2O

Yanfang Xia A B , Min Liu B C and Duxin Li A C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410006, China.

B College of Nuclear Science and Technology, University of South China, Hengyang 421001, China.

C Corresponding authors. Email: liuquanusc@126.com; liduxingx@sina.com

Australian Journal of Chemistry 71(11) 914-916 https://doi.org/10.1071/CH18290
Submitted: 14 June 2018  Accepted: 8 September 2018   Published: 15 October 2018

Abstract

Co0.76Cu0.74[Fe(CN)6]·7.5H2O was prepared as a powder by a chemical co-precipitation method. The powder X-ray diffraction patterns were indexed to the typical face-centred cubic structure with the lattice parameter a 10.55(2) Å. The temperature dependence of the χ−1 curve obeys the Curie–Weiss law (χ = C/(Tθ)) in the temperature range of 180–300 K. According to Curie–Weiss law, the calculated θ value is −54.82 K. In the paramagnetic state at 300 K, the effective magnetic moment (μeff = (8χT)1/2) is 3.58 μB per formula unit. The calculated theoretical effective magnetic moment is 4.06 μB. The magnetic field cooling measurements under a 200 Oe applied magnetic field show that the saturation magnetization value at 2 K of the complex Co0.76Cu0.74[Fe(CN)6]·7.5H2O is 1.528 emu g−1.


References

[1]  O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 1996, 272, 704.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Benmansour, F. Setifi, S. Triki, F. Thétiot, J. Sala-Pala, C. J. Gómez-García, E. Colacio, Polyhedron 2009, 28, 1308.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. Adamson, T. C. Lucas, A. B. Cairns, N. P. Funnell, M. G. Tucker, A. K. Kleppe, J. A. Hriljac, A. L. Goodwin, Physica B 2015, 479, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Matiková-Mal’arová, J. Černák, W. Massa, F. Varret, J. Coord. Chem. 2010, 63, 954.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  E. Albayrak, Physica B 2018, 531, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Bleuzen, V. Marvaud, C. Mathonière, B. Sieklucka, M. Verdaguer, Inorg. Chem. 2009, 48, 3453.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  V. Ksenofontov, G. Levchenko, S. Reiman, P. Gütlich, A. Bleuzen, V. Escax, M. Verdaguer, Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 024415.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. F. Sapnik, X. Liu, H. L. B. Bostrom, C. S. Coates, A. R. Overy, E. M. Reynolds, A. Tkatchenko, A. L. Goodwin, J. Solid State Chem. 2018, 258, 298.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Liu, M. Xu, J. Coord. Chem. 2012, 65, 4353.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Kumar, S. M. Yusuf, L. Keller, J. V. Yakhmi, J. K. Srivastava, P. L. Paulose, Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 224419.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Liu, M. X. Xu, Inorg. Chem. Commun. 2012, 26, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Ohkoshi, K. Hashimoto, J. Am. Chem. Soc. 1999, 121, 10591.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. Kumar, S. M. Yusuf, L. Keller, J. V. Yakhmi, Phys. Rev. Lett. 2008, 101, 207206.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. M. Yusuf, A. Kumar, J. V. Yakhmi, Appl. Phys. Lett. 2009, 95, 182506.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  K. S. Murray, Aust. J. Chem. 2009, 62, 1081.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  E. Chow, D. D. Liana, B. Raguse, J. J. Gooding, Aust. J. Chem. 2017, 70, 979.

[17]  J. K. Zareba, J. Szeremeta, M. Waszkielewicz, M. Nyk, M. Samoc, Inorg. Chem. 2016, 55, 9501.

[18]  P. Bhatt, A. Kumar, S. S. Meena, M. D. Mukadam, S. M. Yusuf, Chem. Phys. Lett. 2016, 651, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  E. Vatansever, Y. Yuksel, J. Alloys Compd. 2016, 689, 446.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. Lartigue, S. Oh, E. Prouzet, Y. Guari, J. Larionova, Mater. Chem. Phys. 2012, 132, 438.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C. Gervais, M. A. Languille, S. Reguer, M. Gillet, E. P. Vicenzi, S. Chagnot, F. Baudelet, L. Bertrand, Appl. Phys. A 2013, 111, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  C. Gervais, M. Thoury, S. Reguer, P. Gueriau, J. Mass, Appl. Phys. A 2015, 121, 949.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  R. Martinez-Garcia, M. Knobel, G. Goya, M. C. Gimenez, F. M. Romero, E. Reguera, J. Phys. Chem. Solids 2006, 672, 289.

[24]  Y. D. Dai, H. B. Huang, J. Lin, Y. F. Hsia, Chin. Phys. 2004, 5, 746.