Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Adsorption of PtCl62− from Hydrochloric Acid Solution by Chemically Modified Lignin Based on Rice Straw

Baoping Zhang A B C , Bowen Shen A B , Meichen Guo A B and Yun Liu A B
+ Author Affiliations
- Author Affiliations

A The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.

B Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.

C Corresponding author. Email: zhangbaoping@wust.edu.cn

Australian Journal of Chemistry 71(12) 931-938 https://doi.org/10.1071/CH18282
Submitted: 7 June 2018  Accepted: 19 September 2018   Published: 15 October 2018

Abstract

A novel adsorbent with the properties of selective adsorption based on rice straw was used to adsorb PtCl62− from hydrochloric acid solution by batch sorption. Many influencing factors for PtCl62− adsorption, such as initial concentration of PtCl62−, adsorption time, and concentration of hydrochloric acid, were optimized. The results suggested that the saturation adsorption capacity of PtCl62− was 218.8 mg g−1 and the equilibrium adsorption time was 120 min. The adsorbent had excellent selectivity on PtCl62− when the concentration of hydrochloric acid was lower than 0.5 mol L−1. The adsorption fitted well with the Langmuir isotherm model and pseudo-second-order kinetics model. The adsorption mechanism was investigated by FT-IR and X-ray photoelectron spectroscopy analyses and it indicated that PtIV was reduced to PtII by hydroxy groups and then coordinated with N through ion exchange between Cl and PtCl42−.


References

[1]  H. Y. Gu, Y. H. Lu, X. T. He, Precious Met. 2016, 37, 94.

[2]  J. H. Jung, H. J. Park, J. Kim, S. H. Hur, J. Power Sources 2014, 248, 1156.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. N. Nikoloski, K. L. Ang, D. Li, Hydrometallurgy 2015, 152, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. Cayumil, R. Khanna, R. Rajarao, P. S. Mukherjee, V. Sahajwalla, Waste Manag. 2016, 57, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. K. Jha, J. C. Lee, M. S. Kim, J. Jeong, B. S. Kim, V. Kumar, Hydrometallurgy 2013, 133, 23.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Ł. Klapiszewski, M. Wysokowski, I. Majchrzak, T. Szatkowski, M. Nowacka, K. S. Stefańska, K. S. Rzepka, P. Bartczak, H. Ehrlich, T. Jesionowski, J. Nanomater. 2013, 20, 12.

[7]  M. Wysokowski, Ł. Klapiszewski, D. Moszyński, P. Bartczak, T. Szatkowski, I. Majchrzak, K. S. Stefańska, V. V. Bazhenov, T. Jesionowski, Mar. Drugs 2014, 12, 2245.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Jakóbik-Kolon, J. Bok-Badura, K. Karoń, K. Mitko, A. Milewski, Carbohydr. Polym. 2017, 169, 213.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  N. A. Negm, M. G. A. E. Wahed, A. R. A. Hassan, M. T. H. A. Kana, J. Mol. Liq. 2018, 264, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  N. Saman, J. W. Tan, S. S. Mohtar, H. Kong, J. W. P. Lye, K. Johari, H. Hassan, H. Mat, Biochem. Eng. J. 2018, 136, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. Liang, X. Y. Guo, N. C. Feng, Q. H. Tian, J. Hazard. Mater. 2010, 174, 756.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  E. Lorenc-Grabowska, P. Rutkowski, Appl. Surf. Sci. 2014, 316, 435.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  G. Z. Kyzas, E. A. Deliyanni, K. A. Matis, Colloid. Surf. A. 2016, 490, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. M. Cai, G. J. Chen, C. Y. Peng, Z. Z. Zhang, Y. Y. Dong, G. Z. Shang, X. H. Zhu, H. J. Gao, X. C. Wan, Appl. Surf. Sci. 2015, 328, 34.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Kılıç, Ç. Kırbıyık, Ö. Çepelioğullar, A. E. Pütün, Appl. Surf. Sci. 2013, 283, 856.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. L. Espinoza-Acosta, P. I. Torres-Chávez, J. L. Olmedo-Martínez, A. Vega-Rios, S. Flores-Gallardo, E. A. Zaragoza-Contreras, J. Energy Chem 2018, 27, 1422.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. Duval, M. Lawoko, React. Funct. Polym. 2014, 85, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Wu, S. Z. Zhang, X. Y. Guo, H. L. Huang, Bioresour. Technol. 2008, 99, 7709.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  B. O. Ogunsile, M. O. Bamgboye, J. Environ. Chem. Eng. 2017, 5, 2708.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  K. Khunathai, M. Matsueda, B. K. Biswas, H. Kawakita, K. Ohto, H. Harada, K. Inoue, M. Funaoka, S. Alam, J. Chem. Eng. Jpn. 2011, 44, 781.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  D. Parajuli, K. Hirota, K. Inoue, Ind. Eng. Chem. Res. 2009, 48, 10163.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. Parajuli, K. Inoue, K. Ohto, T. Oshima, A. Murota, M. Funaoka, K. Makino, React. Funct. Polym. 2005, 62, 129.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Khunathai, D. Parajuli, K. Ohto, H. Kawakita, H. Harada, K. Inoue, K. Hirota, M. Funaoka, Solvent Extr. Ion Exch. 2010, 28, 403.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. Wahlström, A. Kalliola, J. Heikkinen, H. Kyllönen, T. Tamminen, Ind. Crops Prod. 2017, 104, 188.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. Y. Ge, L. Qin, Z. L. Li, Mater. Des. 2016, 95, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. F. Yan, Z. L. Li, Mater. Lett. 2016, 170, 135.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Klapiszewski, P. Bartczak, M. Wysokowski, M. Jankowska, K. Kabat, T. Jesionowski, Chem. Eng. J. 2015, 260, 684.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  V. Nair, A. Panigrahy, R. Vinu, Chem. Eng. J. 2014, 254, 491.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  F. B. Liang, Y. L. Song, C. P. Huang, J. Zhang, B. H. Chen, J. Environ. Chem. Eng. 2013, 1, 1301.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. Keränen, T. Leiviskä, B. Y. Gao, O. Hormi, J. Tanskanen, Chem. Eng. J. 2013, 98, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  W. D. Wang, J. W. Zhang, J. F. Zheng, Q. F. Lu, Ciesc. J. 2013, 64, 1478.

[32]  B. B. Adhikari, M. Gurung, S. Alam, B. Tolnai, K. Inoue, Chem. Eng. J. 2013, 231, 190.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  M. Z. Chandra, Mubarok, Miner. Eng. 2016, 89, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  B. P. Zhang, Y. Liu, Z. C. Ma, M. C. Guo, B. W. Shen, Macromol. Res. 2018, 26, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  B. P. Zhang, Z. C. Ma, Y. Liu, M. C. Guo, F. Yang, Ciesc. J. 2017, 68, 1946.

[36]  B. P. Zhang, F. Yang, Z. C. Ma, M. C. Guo, Y. Liu, J. Hebei Univ. 2016, 36, 474.

[37]  B. P. Zhang, Z. C. Ma, F. Yang, Y. Liu, M. C. Guo, Colloid. Surf. A. 2017, 514, 260.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  F. Ogata, N. Kawasaki, J. Environ. Chem. Eng. 2013, 1, 1013.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  Z. Tavassolirizi, K. Shams, M. R. Omidkhah, J. Environ. Chem. Eng. 2015, 23, 119.

[40]  H. F. Wang, C. Li, C. L. Bao, L. Liu, X. T. Liu, J. Chem. Eng. Data 2011, 56, 4203.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  T. Maruyama, Y. Terashima, S. Takeda, F. Okazaki, M. Goto, Process Biochem. 2014, 49, 850.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  H. Sharififard, F. Zokaee Ashtiani, M. Soleimani, Asia-Pac. Chem. Eng. J. 2013, 8, 384.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  Q. Q. Gong, X. Y. Guo, S. Liang, C. Wang, Q. H. Tian, Int. J. Environ. Sci. Technol. 2016, 13, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Y. Xiong, C. R. Adhikari, H. Kawakita, K. Ohto, K. Inoue, H. Harada, Bioresour. Technol. 2009, 100, 4083.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  D. Parajuli, K. Hunathai, C. R. Adhikari, K. Inoue, K. Ohto, H. Kawakita, M. Funaoka, K. Hirota, Miner. Eng. 2009, 22, 1173.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  D. J. Garole, B. C. Choudhary, D. Paul, A. U. Borse, Environ. Sci. Pollut. Res. Int. 2018, 25, 10911.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  M. Gurung, B. B. Adhikari, S. Alam, H. Kawakita, K. Ohto, K. Inoue, Chem. Eng. J. 2013, 228, 405.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  K. Y. Foo, B. H. Hameed, Chem. Eng. J. 2010, 156, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. Brdar, M. Šćiban, A. Takači, T. Došenović, Chem. Eng. J. 2012, 183, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  Z. J. Mei, Y. Li, M. H. Fan, L. Zhao, J. Zhao, Chem. Eng. J. 2015, 259, 293.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  P. G. Chen, Y. D. Zhang, J. X. Wang, C. Z. Wu, Synth. Fiber 2006, 35, 10.