An Efficient Synthesis of Pyrrolidinone Derivatives in the Presence of 1,1′-Butylenebis(3-sulfo-3H-imidazol-1-ium) Chloride
Nader Ghaffari Khaligh A D , Kim Foong Chong A , Taraneh Mihankhah B , Salam Titinchi C , Mohd Rafie Johan A and Juan Joon Ching AA Nanotechnology and Catalysis Research Center, 3rd Floor, Block A, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia.
B Environmental Research Laboratory, Department of Water and Environmental Engineering, School of Civil Engineering, Iran University of Science and Technology, 16765-163, Tehran, Iran.
C Department of Chemistry, University of the Western Cape, Cape Town 7530, South Africa.
D Corresponding author. Email: ngkhaligh@gmail.com
Australian Journal of Chemistry 71(8) 566-572 https://doi.org/10.1071/CH18246
Submitted: 25 May 2018 Accepted: 7 July 2018 Published: 31 July 2018
Abstract
The catalytic efficiency of 1,1′-butylenebis(3-sulfo-3H-imidazol-1-ium) chloride as a sulfonic acid-functionalized ionic liquid was demonstrated for the synthesis of pyrrolidinone derivatives under mild conditions. The electronic effect of substituents on aniline derivatives was investigated. Further, a study on the structure–activity relationship of ionic liquids containing sulfonic groups for the synthesis of ethyl-2-(4-chlorophenyl)-4-hydroxy-5-oxo-1-(p-tolyl)-2,5-dihydro-1H-pyrrole-3-carboxylate was performed under optimal conditions. The results showed that the catalytic properties of ionic liquids containing two sulfonic or imidazole moieties with carbon spacers was superior to ionic liquids having one sulfonic or imidazole moiety with no carbon spacer.
References
[1] A. S. Amarasekara, Chem. Rev. 2016, 116, 6133.| Crossref | GoogleScholarGoogle Scholar |
[2] D. D. Patel, J. M. Lee, Chem. Rec. 2012, 12, 329.
| Crossref | GoogleScholarGoogle Scholar |
[3] X. Sun, H. Luo, S. Dai, Chem. Rev. 2012, 112, 2100.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. Olivier-Bourbigou, L. Magna, J. Mol. Catal. Chem. 2002, 182–183, 419.
| Crossref | GoogleScholarGoogle Scholar |
[5] Z. S. Qureshi, K. M. Deshmukh, B. M. Bhanage, Clean Technol. Environ. Policy 2014, 16, 1487.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, H. Osada, Org. Lett. 2002, 4, 2845.
| Crossref | GoogleScholarGoogle Scholar |
[7] T. Michael, A. Michael, T. Andreas, H. Ulrich, B. Mirko, N. A. Johannes, Patent WO 2008055945(A1) 2008.
[8] V. O. Koz’minykh, N. M. Igidov, S. S. Zykova, V. E. Kolla, N. S. Shuklina, T. Odegova, Pharm. Chem. J. 2002, 36, 188.
| Crossref | GoogleScholarGoogle Scholar |
[9] Y. Geng, X. Wang, L. Yang, H. Sun, Y. Wang, Y. Zhao, R. She, M.-X. Wang, D.-X. Wang, J. Tang, PLoS One 2015, 10, 1.
[10] K. Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, D. Ye, Bioorg. Med. Chem. Lett. 2011, 21, 6724.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Pendri, T. L. Troyer, M. J. Sofia, M. A. Walker, B. N. Naidu, J. Banville, N. A. Meanwell, I. Dicker, Z. Lin, M. Krystal, S. W. Gerritz, J. Comb. Chem. 2010, 12, 84.
| Crossref | GoogleScholarGoogle Scholar |
[12] V. L. Gein, M. N. Armisheva, N. A. Rassudikhina, M. I. Vakhrin, E. V. Voronina, Pharm. Chem. J. 2011, 45, 162.
| Crossref | GoogleScholarGoogle Scholar |
[13] V. L. Gein, V. A. Mihalev, N. N. Kasimova, E. V. Voronina, M. I. Vakhrin, E. B. Babushkina, Pharm. Chem. J. 2007, 41, 208.
| Crossref | GoogleScholarGoogle Scholar |
[14] V. L. Gein, V. V. Yushkov, N. N. Kasimova, N. S. Shuklina, Y. M. Vasil’eva, M. V. Gubanova, Pharm. Chem. J. 2005, 39, 484.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. S. F. Franco, G. A. Casagrande, C. Raminelli, S. Moura, M. Rossatto, F. H. Quina, C. M. P. Pereira, A. F. C. Flores, L. Pizzuti, Synth. Commun. 2015, 45, 692.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. Anada, S.-i. Hashimoto, Tetrahedron Lett. 1998, 39, 79.
| Crossref | GoogleScholarGoogle Scholar |
[17] D.-R. Choi, K.-Y. Lee, Y.-S. Chung, J.-E. Joo, Y.-H. Kim, Ch.-Y. Oh, Y.-S. Lee, W.-H. Ham, Arch. Pharm. Res. 2005, 28, 151.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. E. Burgess, A. I. Meyers, J. Org. Chem. 1992, 57, 1656.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. E. Overman, T. P. Remarchuk, J. Am. Chem. Soc. 2002, 124, 12.
| Crossref | GoogleScholarGoogle Scholar |
[20] V. Singh, R. Saxena, S. Batra, J. Org. Chem. 2005, 70, 353.
| Crossref | GoogleScholarGoogle Scholar |
[21] R. Sarkar, Ch. Mukhopadhyay, Tetrahedron Lett. 2013, 54, 3706.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Sun, Q. Wu, E.-Y. Xia, Ch.-G. Yan, Eur. J. Org. Chem. 2011, 2981.
| Crossref | GoogleScholarGoogle Scholar |
[23] Q. Zhu, H. Jiang, J. Li, Sh. Liu, Ch. Xia, M. Zhang, J. Comb. Chem. 2009, 11, 685.
| Crossref | GoogleScholarGoogle Scholar |
[24] N. G. Khaligh, Res. Chem. Intermed. 2015, 41, 5411.
| Crossref | GoogleScholarGoogle Scholar |
[25] N. G. Khaligh, S. J. J. Titinchi, S. B. Abd Hamid, H. S. Abbo, Polycycl. Aromat. Compd. 2016, 36, 716.
| Crossref | GoogleScholarGoogle Scholar |
[26] N. G. Khaligh, J. Heterocycl. Chem. 2017, 54, 3350.
| Crossref | GoogleScholarGoogle Scholar |
[27] N. G. Khaligh, Res. Chem. Intermed. 2018, 44, 4045.
| Crossref | GoogleScholarGoogle Scholar |
[28] N. G. Khaligh, T. Mihankhah, M. R. Johan, J. J. Ching, J. Mol. Liq. 2018, 259, 260.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. G. Castellano, A. G. Neo, S. Marcaccini, C. F. Marcos, Org. Lett. 2012, 14, 6218.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Yang, J.-N. Tan, Y. Gu, Green Chem. 2012, 14, 3304.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. Ahankar, A. Ramazani, K. Ślepokura, T. Lis, S. W. Joo, Green Chem. 2016, 18, 3582.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. G. Khaligh, Chin. Chem. Lett. 2015, 26, 26.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. S. Jin, G. Sun, Y. W. Li, T. S. Li, Green Chem. 2002, 4, 255.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. V. Vannikov, A. D. Grishina, Russ. Chem. Rev. 1993, 62, 35.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. Sun, Q. Wu, E.-Y. Xia, C.-G. Yan, Eur. J. Org. Chem. 2011, 2981.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. C. Flores, E. A. Flores, E. Hernández, L. V. Castro, A. García, F. Alvarez, F. S. Vázquez, J. Mol. Liq. 2014, 196, 249.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Krannich, F. Heym, A. Jess, J. Chem. Eng. Data 2016, 61, 1162.
| Crossref | GoogleScholarGoogle Scholar |
[38] A. M. Zonouz, I. Eskandari, B. Notash, Synth. Commun. 2015, 45, 2115.
| Crossref | GoogleScholarGoogle Scholar |
[39] J. Li, D. Li, J. Xie, Y. Liu, Z. Guo, Q. Wang, Y. Lyu, Y. Zhou, J. Wang, J. Catal. 2016, 339, 123.
| Crossref | GoogleScholarGoogle Scholar |
[40] A. R. Moosavi-Zare, M. A. Zolfigol, V. Khakyzadeh, C. Böttcher, N. H. Beyzavi, A. Zare, A. Hasaninejad, R. Luque, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 770.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. Abbasi, Res. Chem. Intermed. 2016, 42, 3303.
| Crossref | GoogleScholarGoogle Scholar |
[42] F. Shirini, N. G. Khaligh, S. Akbari-Dadamahaleh, J. Mol. Catal. Chem. 2012, 365, 15.
| Crossref | GoogleScholarGoogle Scholar |