Efficient Hydrolytic Breakage of β-1,4-Glycosidic Bond Catalyzed by a Difunctional Magnetic Nanocatalyst
Ren-Qiang Yang A , Ni Zhang A , Xiang-Guang Meng A B , Xiao-Hong Liao A , Lu Li A and Hong-Jin Song AA Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
B Corresponding author. Email: mengxgchem@163.com
Australian Journal of Chemistry 71(8) 559-565 https://doi.org/10.1071/CH18138
Submitted: 5 April 2018 Accepted: 5 July 2018 Published: 14 August 2018
Abstract
A novel difunctional magnetic nanocatalyst (DMNC) was prepared and used to catalyse the hydrolytic breakage of β-1,4-glycosidic bonds. The functional nanoparticle displayed excellent catalytic activity for hydrolysis of cellobiose to glucose under moderate conditions. The conversion of cellobiose and yield of glucose could reach 95.3 and 91.1 %, respectively, for a reaction time of 6 h at pH 4.0 and 130°C. DMNC was also an efficient catalyst for the hydrolysis of cellulose: 53.9 % microcrystalline cellulose was hydrolyzed, and 45.7 % reducing sugar was obtained at pH 4.0 and 130°C after 10 h. The magnetic catalyst could be recycled and reused five times without significant loss of catalytic activity.
References
[1] E. J. Cho, S. J. Lee, K. Lee, D.-S. Lee, Y. J. Lee, H.-J. Bae, BioEnergy Res. 2015, 8, 788.| Crossref | GoogleScholarGoogle Scholar |
[2] Z. Yang, R. Huang, W. Qi, L. Tong, R. Su, Z. He, Chem. Eng. J. (Amsterdam, Neth.) 2015, 280, 90.
[3] Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354.
| Crossref | GoogleScholarGoogle Scholar |
[4] L. Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins, K. R. Seddon, Green Chem. 2009, 11, 390.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. Baeyens, Q. Kang, L. Appels, R. Dewil, Y. Lv, T. Tan, Pror. Energy Combust. Sci. 2015, 47, 60.
| Crossref | GoogleScholarGoogle Scholar |
[6] R. Vinu, L. J. Broadbelt, Energy Environ. Sci. 2012, 5, 9808.
| Crossref | GoogleScholarGoogle Scholar |
[7] O. L. Li, R. Ikura, T. Ishizaki, Green Chem. 2017, 19, 4774.
| Crossref | GoogleScholarGoogle Scholar |
[8] N. A. S. Ramli, N. A. S. Amin, J. Mol. Catal. Chem. 2015, 407, 113.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. L. Ollis, J.-W. Liu, B. J. Stevenson, Aust. J. Chem. 2012, 65, 652.
| Crossref | GoogleScholarGoogle Scholar |
[10] L. R. Lynd, M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J. D. McMillan, J. Sheehan, Nat. Biotechnol. 2008, 26, 169.
| Crossref | GoogleScholarGoogle Scholar |
[11] X.-H. Liao, Y. Liu, X. Peng, C. Mi, X.-G. Meng, Catal. Lett. 2016, 146, 1249.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. Hu, Z. Wu, J. Xu, S. Zhou, G. Tang, Korean J. Chem. Eng. 2016, 33, 1232.
| Crossref | GoogleScholarGoogle Scholar |
[13] B. Cinlar, T. F. Wang, B. H. Shanks, Appl. Catal. A Gen. 2013, 450, 237.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. L. Hu, T. J. Smith, W. Y. Lou, M. H. Zong, J. Agric. Food Chem. 2014, 62, 1905.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. L. Zhuo, Q. Z. Du, G. Y. Bai, C. Y. Wang, Y. J. Chen, J. J. Wang, Carbohydr. Polym. 2015, 115, 49.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. Mizuno, S. Kachi, E. Togawa, N. Hayashi, K. Nozaki, T. Itoh, Y. Amano, Aust. J. Chem. 2012, 65, 1491.
| Crossref | GoogleScholarGoogle Scholar |
[17] L. K. Tolonen, P. A. Penttila, R. Serimaa, H. Sixta, Cellulose 2015, 22, 1715.
| Crossref | GoogleScholarGoogle Scholar |
[18] D. A. Cantero, M. D. Bermejo, M. J. Cocero, ChemSusChem 2015, 8, 1026.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. Chen, L. You, H. J. Zhang, Z. H. Ma, Catal. Lett. 2016, 146, 2165.
| Crossref | GoogleScholarGoogle Scholar |
[20] T.-D. Nguyen, H.-D. Nguyen, P.-T. Nguyen, H.-D. Nguyen, Mater. Trans. 2015, 56, 1434.
| Crossref | GoogleScholarGoogle Scholar |
[21] C. Zhang, H. Wang, F. Liu, L. Wang, H. He, Cellulose 2013, 20, 127.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Xiong, Z. Zhang, X. Wang, B. Liu, J. Lin, Chem. Eng. J. 2014, 235, 349.
| Crossref | GoogleScholarGoogle Scholar |
[23] X. Liu, Q. Xu, J. Liu, D. Yin, S. Su, H. Ding, Fuel 2016, 164, 46.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. S. Chae, S. D. Kim, S. H. Piao, H. J. Choi, Colloid Polym. Sci. 2016, 294, 647.
| Crossref | GoogleScholarGoogle Scholar |
[25] L. Chen, Z. Xu, H. Dai, S. Zhang, J. Alloys Compd. 2010, 497, 221.
| Crossref | GoogleScholarGoogle Scholar |
[26] L. Hu, Z. Li, Z. Wu, L. Lin, S. Y. Zhou, Ind. Crops Prod. 2016, 84, 408.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. Shen, B. Cai, C. Wang, H. Li, G. Dai, H. Qin, Appl. Catal. A Gen. 2014, 473, 70.
| Crossref | GoogleScholarGoogle Scholar |
[28] T.-C. Su, Z. Fang, F. Zhang, J. Luo, X.-K. Li, Sci. Rep. 2015, 5, 17538.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Guo, Y. Lian, L. Yan, X. Qi, R. L. Smith, Green Chem. 2013, 15, 2167.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. Liu, Y.-J. Liu, F. Deng, M.-G. Ma, J. Bian, RSC Adv. 2015, 5, 74198.
| Crossref | GoogleScholarGoogle Scholar |
[31] L.-C. Tsai, L.-F. Shyur, Y.-S. Cheng, S.-H. Lee, J. Mol. Biol. 2005, 354, 642.
| Crossref | GoogleScholarGoogle Scholar |
[32] T. M. Gloster, J. M. Macdonald, C. A. Tarling, R. V. Stick, S. G. Withers, G. J. Davies, J. Biol. Chem. 2004, 279, 49236.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. R. K. Cairns, A. Esen, Cell. Mol. Life Sci. 2010, 67, 3389.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. Sun, X. Liu, X. L. Zhu, H. Wang, S. Rostamnia, J. Y. Han, Catalysts 2017, 7, 127.
| Crossref | GoogleScholarGoogle Scholar |
[35] G. S. Foo, A. H. Van Pelt, D. Krotschel, B. F. Sauk, A. K. Rogers, C. R. Jolly, M. M. Yung, C. Sievers, ACS Sustain. Chem. & Eng. 2015, 3, 1934.
| Crossref | GoogleScholarGoogle Scholar |
[36] L. P. Zhou, Z. Liu, Y. Q. Bai, T. L. Lu, X. M. Yang, J. Xu, J Energy Chem. 2016, 25, 141.
| Crossref | GoogleScholarGoogle Scholar |
[37] D.-m. Lai, L. Deng, Q.-x. Guo, Y. Fu, Energy Environ. Sci. 2011, 4, 3552.
| Crossref | GoogleScholarGoogle Scholar |
[38] H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka, ChemSusChem 2010, 3, 440.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 2008, 130, 12787.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. M. Shaik, C. Y. Koh, P. N. Sharratt, R. B. H. Tan, Thermochim. Acta 2013, 566, 1.
| Crossref | GoogleScholarGoogle Scholar |
[41] L. Shuai, X. Pan, Energy Environ. Sci. 2012, 5, 6889.
| Crossref | GoogleScholarGoogle Scholar |
[42] M. J. Antal, G. Varhegyi, Ind. Eng. Chem. Res. 1995, 34, 703.
| Crossref | GoogleScholarGoogle Scholar |
[43] L. J. Jönsson, C. Martín, Bioresour. Technol. 2016, 199, 103.
| Crossref | GoogleScholarGoogle Scholar |
[44] J. Zhang, B. Zhang, J. Zhang, L. Lin, S. Liu, P. Ouyang, Biotechnol. Adv. 2010, 28, 613.
| Crossref | GoogleScholarGoogle Scholar |
[45] R. Hu, L. Lin, T. Liu, P. Ouyang, B. He, S. Liu, J. Biobased Mater. Bioenergy 2008, 2, 156.
| Crossref | GoogleScholarGoogle Scholar |
[46] K. S. Başkan, E. Tütem, E. Akyüz, S. Özen, R. Apak, Talanta 2016, 147, 162.
| Crossref | GoogleScholarGoogle Scholar |
[47] M. Michau, M. Barboiu, J. Mater. Chem. 2009, 19, 6124.
| Crossref | GoogleScholarGoogle Scholar |