Evolution Analysis of Silver Nanoparticles Synthesised by Lactam Reduction: A Case Study of ϵ-Caprolactam
Na Zhang A , Jianping Duan B , Dajiang Zhao A and Guisheng Yang A CA School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
B Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
C Corresponding author. Email: hfut20110766@163.com
Australian Journal of Chemistry 71(8) 587-594 https://doi.org/10.1071/CH18148
Submitted: 7 April 2018 Accepted: 23 July 2018 Published: 27 August 2018
Abstract
Without using protecting agent and solvent, silver nanoparticles (Ag NPs) were synthesised by using lactams as reducing agents. Being the most commercially available lactam, ϵ-caprolactam (CL) was taken as a model to illustrate the evolution of Ag NPs in the medium of lactams. The results showed that there were two different stages involved in the Ag NP evolution process. In the first stage, particles were stabilised against further coalescence at a smaller size (< 5 nm) because of face-bound CL. In the second stage, the Ostwald ripening mechanism cooperated with continuous reduction of residual silver ions, which resulted in the resultant particles being distributed with different size distribution. The participation of CL in the reducing and protecting procedures raised a complex evolution of Ag NPs.
References
[1] (a) Y. Sun, Y. Xia, Adv. Mater. 2003, 15, 695.| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. S. Shim, S. H. Bhang, K. Yoon, K. Choi, Y. Xia, Angew. Chem. 2012, 124, 12069.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Jin, Y. Cao, C. A. Mirkin, K. Kelly, G. C. Schatz, J. Zheng, Science 2001, 294, 1901.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Regiel, S. Irusta, A. Kyziol, M. Arruebo, J. Santamaria, Nanotechnology 2013, 24,
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) I. Pastoriza-Santos, L. M. Liz-Marzán, Langmuir 1999, 15, 948.
| Crossref | GoogleScholarGoogle Scholar |
(b) I. Pastoriza-Santos, R. Serra, C. Guez, L. M. Liz-Marzán, J. Colloid Interface Sci. 2000, 221, 236.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Xia, G. Yang, J. Mater. Chem. 2012, 22, 18664.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. J. Steadman, L. J. Mathias, Polymer 1997, 38, 5297.
| Crossref | GoogleScholarGoogle Scholar |
(e) I. Pastoriza-Santos, L. M. Liz-Marzán, Nano Lett. 2002, 2, 903.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, Y. Xia, Nano Lett. 2008, 8, 2077.
| Crossref | GoogleScholarGoogle Scholar |
(g) Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945.
| Crossref | GoogleScholarGoogle Scholar |
(h) Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett. 2002, 2, 165.
| Crossref | GoogleScholarGoogle Scholar |
(i) B. Pant, H. R. Pant, D. R. Pandeya, G. Panthi, K. T. Nam, S. T. Hong, C. S. Kim, H. Y. Kim, Colloids Surf. A 2012, 395, 94.
| Crossref | GoogleScholarGoogle Scholar |
[3] T. Huang, X. H. N. Xu, J. Mater. Chem. 2010, 20, 9867.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) P.-Y. Silvert, R. Herrera-Urbina, K. Tekaia-Elhsissen, J. Mater. Chem. 1997, 7, 293.
| Crossref | GoogleScholarGoogle Scholar |
(b) P.-Y. Silvert, R. Herrera-Urbina, N. Duvauchelle, V. Vijayakrishnan, K. T. Elhsissen, J. Mater. Chem. 1996, 6, 573.
| Crossref | GoogleScholarGoogle Scholar |
[5] I. Pastoriza-Santos, L. M. Liz-Marzán, Langmuir 2002, 18, 2888.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem. Rev. 2011, 111, 3669.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) J. Yang, H. Yin, J. Jia, Y. Wei, Langmuir 2011, 27, 5047.
| Crossref | GoogleScholarGoogle Scholar |
(b) X. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 2005, 437, 121.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, J. Am. Chem. Soc. 2010, 132, 11372.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, Nano Lett. 2005, 5, 2034.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Zhang, C. Cobley, L. Au, M. McKiernan, A. Schwartz, L.-P. Wen, J. Chen, Y. Xia, ACS Appl. Mater. Interfaces 2009, 1, 2044.
| Crossref | GoogleScholarGoogle Scholar |
[9] B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, Y. Xia, Nano Lett. 2007, 7, 1032.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. Chen, D. L. Carroll, Nano Lett. 2002, 2, 1003.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 2002, 14, 4736.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) R. Xiong, C. Lu, Y. Wang, Z. Zhou, X. Zhang, J. Mater. Chem. 2013, 1, 14910.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Regiel, S. Irusta, A. Kyzioł, M. Arruebo, J. Santamaria, Nanotechnology 2013, 24,
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Henglein, M. Giersig, J. Phys. Chem. B 1999, 103, 9533.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) H. Xia, G. Yang, RSC Adv. 2013, 3, 12320.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Li, H. S. Xia, G. S. Yang, Nano 2014, 9,
| Crossref | GoogleScholarGoogle Scholar |
[16] J. Duan, D. Zhao, G. Yang, RSC Adv. 2014, 4, 28765.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 1996, 121, 105.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 2005, 94, 449.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Puffr, J. Šebenda, Eur. Polym. J. 1972, 8, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[19] E. Matijevic, Chem. Mater. 1993, 5, 412.
| Crossref | GoogleScholarGoogle Scholar |