Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Mechanism for Three-Component Ni-Catalyzed Carbonyl–Ene Reaction for CO2 Transformation: What Practical Lessons Do We Learn from DFT Modelling?

Bun Chan A B , Ying Luo A and Masanari Kimura A
+ Author Affiliations
- Author Affiliations

A Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.

B Corresponding author. Email: bun.chan@nagasaki-u.ac.jp

Australian Journal of Chemistry 71(4) 272-278 https://doi.org/10.1071/CH17573
Submitted: 5 November 2017  Accepted: 6 January 2018   Published: 25 January 2018

Abstract

In the present study, we use computational quantum chemistry to examine the nickel-catalyzed three-component coupling for transforming CO2 into a homoallylic alcohol. We find that the reaction is limited by several Ni-assisted atom transfer reactions in the catalytic cycle, in which a new product formation pathway is found from our calculations. Our results also point towards several key factors for an efficient reaction. Thus, substrates that would lead to a stabilized alkene facilitate a key step in the catalytic cycle. The optimal phosphine ligand should provide a good balance between directing stereochemistry with its steric bulk and enabling the reaction without being excessively bulky. Our calculations also highlight the importance of carefully chosen substrates and ligands in order to avoid potential side reactions, and that knowing the conformational preference in the substrate alone may not be sufficient for predicting the stereochemistry.


References

[1]  P. Knochel, G. A. Molander, Comprehensive Organic Synthesis, 2nd Edn 2014 (Elsevier: Amsterdam).

[2]  R. Mahrwald, Drug Discov. Today 2013, 10, e29.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. Choi, G. C. Fu, Science 2017, 356, eaaf7230.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. Hagen, Industrial Catalysis: A Practical Approach, 2nd Edn 2006 (Wiley-VHC: Weinheim).

[5]  W. M. C. Sameera, F. Maseras, WIREs Comput. Mol. Sci. 2012, 2, 375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVyrsr8%3D&md5=afe0bc675353fcb7554a31906b02543fCAS |

[6]  K. Mikami, M. Simizu, Chem. Rev. 1992, 92, 1021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvV2mur0%3D&md5=55601d43bae9e89a51dcbd2e69b22b29CAS |

[7]  Y. Mori, C. Shigeno, Y. Luo, B. Chan, G. Onodera, M. Kimura, Synlett 2017,
         | Crossref | GoogleScholarGoogle Scholar |

[8]  W. R. Roush, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming, C. H. Heathcock) 1991, Vol. 2, pp. 1–54 (Pergamon: Oxford).

[9]  K. Kataoka, Y. Ode, M. Matsumoto, J. Nokami, Tetrahedron 2006, 62, 2471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVSitLY%3D&md5=cbc30f071298d1e5fc38f6f957375937CAS |

[10]  N. Makita, Y. Hoshino, H. Yamamooto, Angew. Chem. Int. Ed. 2003, 42, 941.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFWltbk%3D&md5=0f86599ca58fc8c0ae6b0296c968ff47CAS |

[11]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision A.03 2016 (Gaussian, Inc.: Wallingford, CT).

[12]  W. J. Hehre, Spartan 16 2016 (Wavefunction, Inc.: Irvine, CA).

[13]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=d73ad56c68c933738e3581e2801ce5caCAS |

[14]  M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2006, 2, 1282.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 2007, 3, 2234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77I&md5=6e94b1963c870e561a8b0e8dab5d2baaCAS |

[16]  M. Bühl, C. Reimann, D. A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 2008, 4, 1449.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77F&md5=0d1dcd6dcfa92deea623413409eb14a5CAS |

[18]  Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101–1.

[19]  H. S. Yu, X. He, D. G. Truhlar, J. Chem. Theory Comput. 2016, 12, 1280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12qsQ%3D%3D&md5=59aa58a49a188d2e4fb71c6f4d924bf6CAS |

[20]  N. Mardirossian, M. Head-Gordon, Mol. Phys. 2017, 115, 2315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVCltb3O&md5=3b10d0acc8e93845a4e42ccc61d93139CAS |

[21]  J. J. Determan, K. Poole, G. Scalmani, M. J. Frisch, B. G. Janesko, A. K. Wilson, J. Chem. Theory Comput. 2017, 13, 4907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVKhu7bL&md5=0b9a498440d1ebd8735fc75d7bf18699CAS |

[22]  Q. Feng, R. Tong, J. Am. Chem. Soc. 2017, 139, 6177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlvVejtrc%3D&md5=b33dcdc3a05c2fe9e032ec85d1bdc2d0CAS |

[23]  R. F. W. Bader, Chem. Rev. 1991, 91, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWgt7s%3D&md5=81cd1459b2f38f4a646a6c4389d6e0e5CAS |

[24]  T. A. Keith, AIMAll, Version 17.11.14 2017 (TK Gristmill Software: Overland Park, KS). Available at: http://aim.tkgristmill.com (accessed 2 January 2018).