Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Polymorphs of ROY: A Computational Study of Lattice Energies and Conformational Energy Differences*

Sajesh P. Thomas A and Mark A. Spackman A B
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.

B Corresponding author. Email: mark.spackman@uwa.edu.au

Australian Journal of Chemistry 71(4) 279-284 https://doi.org/10.1071/CH17620
Submitted: 30 November 2017  Accepted: 11 January 2018   Published: 8 February 2018

Abstract

The remarkable structural diversity observed in polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (commonly known as ROY) challenges computational attempts to predict or rationalize their relative stability. This modest study explores the applicability of CE-B3LYP model energy calculation of lattice energies (using experimental crystal structures), supplemented by a systematic approach to account for conformational energy differences. The CE-B3LYP model provides sensible estimates of absolute and relative lattice energies for the polymorphs, provided care is taken to achieve convergence in the summation of pairwise terms. Conformational energy differences based on density functional theory (DFT) energies are shown to be unreliable, but MP2 energies based on DFT-optimized structures show considerable promise.


References

[1]  L. Yu, G. A. Stephenson, C. A. Mitchell, C. A. Bunnell, S. V. Snorek, J. J. Bowyer, T. B. Borchardt, J. G. Stowell, S. R. Byrn, J. Am. Chem. Soc. 2000, 122, 585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVSlsw%3D%3D&md5=533c7f857f7ba72aa7be79a9c44768f8CAS |

[2]  L. Yu, J. Phys. Chem. A 2002, 106, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlChtbY%3D&md5=3db027b6818a84b4c2b3798132975c11CAS |

[3]  S. Chen, I. A. Guzei, L. Yu, J. Am. Chem. Soc. 2005, 127, 9881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt12nt7s%3D&md5=878d9ca37aad3fc3d158a5b38f47f471CAS |

[4]  S. Chen, H. Xi, L. Yu, J. Am. Chem. Soc. 2005, 127, 17439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WltL%2FE&md5=d2421e37dd126dee207d255393cec070CAS |

[5]  L. Yu, Acc. Chem. Res. 2010, 43, 1257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1CntL4%3D&md5=835f5b6d1eb30e44278928da30e323ccCAS |

[6]  M. Vasileiadis, A. V. Kazantsev, P. G. Karamertzanis, C. S. Adjiman, C. C. Pantelides, Acta Crystallogr. Sect. B 2012, 68, 677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtrvN&md5=d9dd765121d27b8f71246e8b3fb2064fCAS |

[7]  M. Habgood, I. J. Sugden, A. V. Kazantsev, C. S. Adjiman, C. C. Pantelides, J. Chem. Theory Comput. 2015, 11, 1957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtVehurc%3D&md5=b5f60cd060c2ca0a6c1cba142f262e62CAS |

[8]  J. D. Dunitz, A. Gavezzotti, Cryst. Growth Des. 2005, 5, 2180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFaktbY%3D&md5=5c200914a4721b9acdbb87a3df418eddCAS |

[9]  T. Li, P. W. Ayers, S. Liu, M. J. Swadley, C. Aubrey-Medendorp, Chem. – Eur. J. 2009, 15, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVClsw%3D%3D&md5=6720e54b6781706274d83fa5df092c48CAS |

[10]  M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman, J. Phys. Chem. Lett. 2014, 5, 4249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFOhtr3N&md5=f540b4f73ea0fc777fea48b2e2d0ce25CAS |

[11]  C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVGku7rI&md5=8874d65ce4ecc1fec74f857f1e77c66fCAS |

[12]  S. P. Thomas, P. R. Spackman, D. Jayatilaka, M. A. Spackman, J. Chem. Theory Comput. 2018,
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Nyman, G. M. Day, CrystEngComm 2015, 17, 5154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvFGit7Y%3D&md5=d5a1206b4b96ec4105f64b347f644046CAS |

[14]  A. J. Cruz-Cabeza, J. Bernstein, Chem. Rev. 2014, 114, 2170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCrsLvP&md5=4ca91cde181cefa450d0aa127fe012a5CAS |

[15]  M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2015, 3735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehtrnE&md5=a556e1c6a68bba0389b033005d16243aCAS |

[16]  S. P. Thomas, M. W. Shi, G. A. Koutsantonis, D. Jayatilaka, A. J. Edwards, M. A. Spackman, Angew. Chem. Int. Ed. 2017, 56, 8468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntFWkt7g%3D&md5=2a2acbea6287181fb5b4cca34833eec4CAS |

[17]  F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, in International Tables for Crystallography C: Mathematical, Physical and Chemical Tables, 3rd Edn (Ed. E. Prince) 2004, pp. 790–811 (Springer Verlag: Berlin).

[18]  A. D. Buckingham, Adv. Chem. Phys. 1967, 12, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovF2gsw%3D%3D&md5=d9ad34736e7b29076b44fecce9387df4CAS |

[19]  M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17 2017 (University of Western Australia: Perth). Available at: http://hirshfeldsurface.net

[20]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford, CT).

[21]  C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 2016, 72, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xls1Kntro%3D&md5=3b6e5751de75c969017853e90d136dcbCAS |