Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Enhanced Solar Light Photocatalytic Activity of a C/N Co-Doped TiO2/Diatomite Composite with Exposed (001) Facets

Xiongbo Dong A , Zhiming Sun A B , Xiangwei Zhang A , Xue Li A and Shuilin Zheng A
+ Author Affiliations
- Author Affiliations

A School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

B Corresponding author. Email: zhimingsun@cumtb.edu.cn

Australian Journal of Chemistry 71(5) 315-324 https://doi.org/10.1071/CH17544
Submitted: 13 October 2017  Accepted: 26 January 2018   Published: 14 March 2018

Abstract

A C/N co-doped TiO2/diatomite composite with exposed (001) facet was prepared through a facile sol–gel method using tetrabutyl titanate as a titanium precursor and hexamethylenetetramine as C/N dopant. The as-prepared photocatalyst composites were characterised by X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS), photoluminescence spectroscopy (PL), as well as X-ray photoelectron spectroscopy (XPS). The TiO2 nanoparticles were immobilised and uniformly distributed on the surface of diatomite with a smaller grain size compared with pure TiO2. In addition, compared with pure TiO2 and the undoped TiO2/diatomite composite, the photocatalytic activity of the C/N co-doped TiO2/diatomite composite under solar light illumination was obviously enhanced. Results indicate that the introduction of a C/N dopant can effectively promote the growth of the highly active anatase (001) facet of TiO2. On the other hand, the N impurity was doped into the interstitial spaces of the TiO2 lattice, which accelerated the charge transfer and hindered the recombination of photogenerated electron–hole pairs. The results show that the as-prepared composite exhibited promising applications in dye wastewater degradation owing to its outstanding reusability and cost-effectiveness.


References

[1]  Y. Cui, Q. Ma, X. Deng, Q. Meng, X. Cheng, M. Xie, X. Li, Q. Cheng, Appl. Catal. B 2017, 206, 136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlCksLo%3D&md5=a24860c3e59629777e2514cb1dc3a68dCAS |

[2]  R. Mu, Z. Xu, L. Li, Y. Shao, H. Wan, S. Zheng, J. Hazard. Mater. 2010, 176, 495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVCnsA%3D%3D&md5=92abff9b3646aa4d93bd50f9c4dc807bCAS |

[3]  J. Tian, Y. Leng, H. Cui, H. Liu, J. Hazard. Mater. 2015, 299, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKhtr3L&md5=52dacd37358b2100b541dbd545c4741bCAS |

[4]  P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang, M. Lei, ACS Appl. Mater. Interfaces 2013, 5, 2924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslWhurc%3D&md5=7c2f8c8f77ec423de425691d9ac5133aCAS |

[5]  X. Lin, F. Rong, X. Ji, D. Fu, Microporous Mesoporous Mater. 2011, 142, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFOntr4%3D&md5=815967aafe65ee9b61b0caa223725a3fCAS |

[6]  C. Han, V. Likodimos, J. A. Khan, M. N. Nadagouda, J. Andersen, P. Falaras, P. Rosaleslombardi, D. D. Dionysiou, Environ. Sci. Pollut. Res. Int. 2014, 21, 11781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Ohs7fM&md5=48db0cb011e5364989ccd4e7dcbc73f3CAS |

[7]  K. M. Reddy, B. Baruwati, M. Jayalakshmi, M. M. Rao, S. V. Manorama, J. Solid State Chem. 2005, 178, 3352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SgsbvK&md5=da69c76aeaaa29a5b14acd3822cb705bCAS |

[8]  J. Li, X. Xu, X. Liu, W. Qin, L. Pan, Ceram. Int. 2017, 43, 835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1als7vF&md5=1245c082b023b66c53155ed8fcbac796CAS |

[9]  A. Surenjan, B. Sambandam, T. Pradeep, L. Philip, J. Environ. Chem. Eng. 2017, 5, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXotlelsA%3D%3D&md5=217685f7e1847e4f1e06a6a0ff3620f2CAS |

[10]  G. Wu, J. Wang, D. F. Thomas, A. Chen, Langmuir 2008, 24, 3503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFyisrg%3D&md5=aa152d2712661a42bfe7331c0a44b4dbCAS |

[11]  N. Lu, X. Quan, J. Y. Li, S. Chen, H. T. Yu, G. H. Chen, J. Phys. Chem. C 2007, 111, 11836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFSmsLw%3D&md5=e7c26b1ded416616b456193da074a327CAS |

[12]  Q. Guo, Z. Zhang, X. Ma, K. Jing, M. Shen, N. Yu, J. Tang, D. D. Dionysiou, Separ. Purif. Tech. 2017, 175, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFOhtLvJ&md5=4797f7810efba5cc6356b6c6c3525094CAS |

[13]  S. Ramandi, M. H. Entezari, N. Ghows, Ultrason. Sonochem. 2017, 38, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkvFWntbs%3D&md5=a69d0510ecfebb982a0ee0bbc2a9fb00CAS |

[14]  J. Yang, Q. C. Liu, M. Yang, W. C. Xi, Y. Hu, Adv. Mater. Res. 2010, 154, 1310.

[15]  L. Wang, S. Zheng, W. Tian, J. Chin. Ceram. Soc. 2008, 36, 1644.
         | 1:CAS:528:DC%2BD1cXhsVCjtL3M&md5=3ed5eb69e957d45d599e1922d56f02f2CAS |

[16]  Q. Sun, H. Li, S. Zheng, Z. Sun, Appl. Surf. Sci. 2014, 311, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1elt7c%3D&md5=10e85ccc134d985550a9621b194a2c57CAS |

[17]  J. Weng, F. Gao, L. Chen, R. Qiu, in Proceedings of the 2015 International Forum on Energy, Environment Science and Materials 2015, pp. 491–495 (Atlantis Press: Amsterdam, The Netherlands). 10.2991/IFEESM-15.2015.93

[18]  J. X. Lin, L. Wang, C. Sun, Adv. Mater. Res. 2012, 441, 568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFCmsbc%3D&md5=aed05171d234adca67dab26353d50aa2CAS |

[19]  S. Zheng, R. Gao, J. Wang, J. Zhang, H. Xu, J. Chin. Ceram. Soc. 2008, 36, 1633.
         | 1:CAS:528:DC%2BD1cXhsVCjtLzE&md5=c719247db9247b39bcc01ef719d4f918CAS |

[20]  J. Tokarský, P. Peikertová, P. Čapková, L. Neuwirthová, L. Kulhánková, K. M. Kutláková, V. Matějka, Mater. Chem. Phys. 2014, 146, 146.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C. Wang, H. Shi, P. Zhang, Y. Li, Appl. Clay Sci. 2011, 53, 646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyltrfL&md5=071627e82381c6a1fa33d5096e0d1296CAS |

[22]  V. Matějka, P. Matějková, P. Kovář, J. Vlček, J. Přikryl, P. Červenka, Z. Lacný, J. Kukutschová, Construct. Build. Mater. 2012, 35, 38.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  R. Djellabi, M. F. Ghorab, C. L. Bianchi, G. Cerrato, S. Morandi, J. Chem. Eng. Process Technol. 2016, 7, 1.

[24]  P. X. Wu, C. B. Ming, J. Mineral. Petrol. 2005, 25, 1.

[25]  Z. Sun, Z. Hu, Y. Yan, S. Zheng, Appl. Surf. Sci. 2014, 314, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Grt7nN&md5=3f05e20dcbfc02c31df3773c0cf296a6CAS |

[26]  Z. Sun, C. Bai, S. Zheng, X. Yang, R. L. Frost, Appl. Catal. A 2013, 458, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVGlsLY%3D&md5=e1a01d7b3186cd82582dd7dccc276dc8CAS |

[27]  M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater. 2010, 177, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisV2kurw%3D&md5=913efa4e030d798a9aa5016815368a36CAS |

[28]  G. Zhang, B. Wang, Z. Sun, S. Zheng, S. Liu, Desalination Water Treat. 2015, 9, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  K. J. Hsien, W. T. Tsai, T. Y. Su, J. Sol-Gel Sci. Technol. 2009, 51, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFalsbY%3D&md5=4729901eb330b5e82ad37e9d192c6286CAS |

[30]  Z. Sun, Y. Yang, G. Zhang, Z. Wu, S. Zheng, Adv. Powder Technol. 2015, 26, 595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1Cqurc%3D&md5=7803dea87735060ed9edcc486fe66e46CAS |

[31]  C. Li, Z. Sun, R. Ma, Y. Xue, S. Zheng, Microporous Mesoporous Mater. 2017, 243, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjtlyitLc%3D&md5=9281921710e6390d580fa457df83d5d0CAS |

[32]  O. Şan, R. Gören, C. Özgür, Int. J. Miner. Process. 2009, 93, 6.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Z. Sun, J. Mao, Z. Hu, S. Zheng, Particul. Sci. Technol. 2017, 35, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvFGru7Y%3D&md5=4278fd04b78ce20626bc58e20fb4db17CAS |

[34]  M. A. M. Khraisheh, Y. S. Al-Degs, W. A. M. Mcminn, Chem. Eng. J. 2004, 99, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVeltbY%3D&md5=e0ca6e142ea1aef36c3a290c67f757a8CAS |

[35]  B. Yılmaz, N. Ediz, Cement Concr. Compos. 2008, 30, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. Li, Z. Wu, H. Kao, Sol. Energy Mater. Sol. Cells 2011, 95, 2412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlWrtb8%3D&md5=d90db55aaaeed39caf5001d5d65610c2CAS |

[37]  H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature 2008, 453, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKqtbk%3D&md5=fff6d6ec42dcb18060f905aab071aa03CAS |

[38]  M. East, Pure Appl. Chem. 2015, 87, 25.

[39]  C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie, L. Zheng, Chem. Asian J. 2013, 8, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1CktrbO&md5=5e298869c5f68747aae9edded1cd088eCAS |

[40]  J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 6124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKls7o%3D&md5=25722615c0c375704ddd3e6b3dd6de21CAS |

[41]  X. Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 2006, 5, 665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFeiur8%3D&md5=7b1c910ffa4a263d9fb6bf3919710615CAS |

[42]  Z. Zhang, J. Long, X. Xie, H. Lin, Y. Zhou, R. Yuan, W. Dai, Z. Ding, X. Wang, X. Fu, ChemPhysChem 2012, 13, 1542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjtlyjurg%3D&md5=60575d16a6b724ce8c02144b9dd9122cCAS |

[43]  M. V. Dozzi, C. D’Andrea, B. Ohtani, G. Valentini, E. Selli, J. Phys. Chem. C 2013, 117, 25586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgs7bF&md5=606531d4bfd91c479993d7281853fcf7CAS |

[44]  D. Chen, Z. Jiang, J. Geng, A. Qun Wang, D. Yang, Ind. Eng. Chem. Res. 2007, 46, 2741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Skurk%3D&md5=2d0a1311969230cde25be55767028d55CAS |

[45]  R. Jaiswal, N. Patel, D. C. Kothari, A. Miotello, Appl. Catal. B 2012, 126, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaiur7N&md5=25d45faa55770a7e601b1877c3b253c5CAS |

[46]  Y. Xia, F. Li, Y. Jiang, M. Xia, B. Xue, Y. Li, Appl. Surf. Sci. 2014, 303, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12gtLw%3D&md5=eec83c32d376ae5fb3a949aee481765aCAS |

[47]  Q. Xiang, J. Yu, M. Jaroniec, Phys. Chem. Chem. Phys. 2011, 13, 4853.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Cks7s%3D&md5=f590199194a8b3a0658f9c36d4f8db4aCAS |

[48]  R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1yitbc%3D&md5=2da5730f18466c80a6ebd2d928982fecCAS |