Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synergistic Effect of Hexaphenoxycyclotriphosphazene and Aluminium Tri-Hydroxide on Flame Retardancy and Smoke Suppression of Epoxy Resin

Meili Dong A , Baolin Wu A C , Shidong Xu A and Po Hu B
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China.

B School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China.

C Corresponding author. Email: wubaolin@sau.edu.cn

Australian Journal of Chemistry 71(5) 325-333 https://doi.org/10.1071/CH17594
Submitted: 18 November 2017  Accepted: 28 January 2018   Published: 6 March 2018

Abstract

Flame retardancy and smoke suppression of polymer materials are key problems to be considered for applications that have a potential fire hazard. This study selected hexaphenoxycyclotriphosphazene (HPCTP) and aluminium tri-hydroxide (ATH) powder as an integrated flame retardant treatment in epoxy resin (EP) which is usually used as the matrix of a composite. The characteristics of flame retardancy and smoke suppression were investigated. The results showed that when treated with HPCTP and ATH, the resin exhibits superior properties, resisting flame development and smoke release. Based on analysis of the surface structure of the burned materials by scanning electron microscopy–energy dispersive spectroscopy and X-ray photoelectron spectroscopy, it was confirmed that HPCTP and ATH can attract a lot of heat to slow down decomposition of the resin and produce a comprehensive protection system consisting of a non-flammable gas and solid phases during burning. Non-flammable gas can reduce the concentration of flammable gas to inhibit combustion. In addition, H2O vapour can also reduce the concentration of flammable gas to inhibit combustion. Meanwhile, solid phase films can insulate air to slow down combustion and smoke release.


References

[1]  C. M. Damian, M. A. Vulcan, A. Zaharia, C. Zaharia, E. Vasile, H. Iovu, High Perform. Polym. 2016, 28, 1151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktlWhu7c%3D&md5=3b0b455ae34417478e067f8168f6593dCAS |

[2]  L. Zhang, J. Li, J. Wu, Q. Lin, M. Yang, High Perform. Polym. 2016, 28, 1024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktlWhu7Y%3D&md5=74da728c3726f5fe653ddb55814421b7CAS |

[3]  S. V. Levchik, E. D. Weil, Polym. Int. 2004, 53, 1901.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKhurbN&md5=e674c47819b5acbd024d071bbd2b5780CAS |

[4]  U. Braun, A. I. Balabanovich, B. Schartel, U. Knoll, J. Artner, M. Ciesielski, M. Döring, R. Perez, J. K. W. Sandler, V. Altstädt, T. Hoffmann, D. Pospiech, Polymer 2006, 47, 8495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yktLvJ&md5=8785423a040ca0ecc81022a2e4b85961CAS |

[5]  M. Jiajun, Y. Junxiao, H. Yawen, C. Ke, J. Mater. Chem. 2012, 22, 2007.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Z. Huang, S.-D. Jiang, N. Hong, Y. Zhu, Y. Hou, Y. Hu, Composites, Part A 2017, 95, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXislGntLk%3D&md5=9890b66ae508e607246927004eef76dfCAS |

[7]  K. Krishnadevi, V. Selvaraj, High Perform. Polym. 2016, 28, 881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFSktrrP&md5=d1807141e25330a12c54f3e9e079ec06CAS |

[8]  R. K. Jian, P. Wang, W. S. Duan, J. S. Wang, X. L. Zheng, J. B. Weng, Ind. Eng. Chem. Res. 2016, 55, 11520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslWjsbjE&md5=c9a8cee8251fd1dc1bc09b58445aea2dCAS |

[9]  S. Yang, Q. X. Zhang, Y. F. Hu, Polym. Degrad. Stabil. 2016, 133, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFOmtb%2FO&md5=a11b510eec3d06c4348d655f05e3cc0bCAS |

[10]  Z. L. Zhang, Y. Q. Han, T. X. Li, T. Q. Wang, X. X. Gao, Q. Liang, L. Chen, Synth. Met. 2016, 221, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslGgsLfP&md5=154a8115c0f00fc554108e0d8f7a4481CAS |

[11]  S. Qiu, X. Wang, B. Yu, X. Feng, X. Mu, R. K. K. Yuen, Y. Hu, J. Hazard. Mater. 2017, 325, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVSmtLjF&md5=1d7029a870d602a44ff8add1d047c0e9CAS |

[12]  W. Xu, B. Zhang, X. Wang, G. Wang, D. Ding, J. Hazard. Mater. 2018, 343, 364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1Wqt7jJ&md5=d1752bed492aa244b0fa99645d02103fCAS |

[13]  D. Shen, Y.-J. Xu, J.-W. Long, X.-H. Shi, L. Chen, Y.-Z. Wang, J. Anal. Appl. Pyrolysis 2017, 128, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsl2nsrjF&md5=22a683d9eb96692cfbf06fe3e947d22cCAS |

[14]  F. Lai, H. Fu, O. Zhao, Y.-h. Zhang, P. Li, S.-m. Chen, X.-j. Gu, D.-m. Ban, Acta Polym Sin 2017, 4, 692.

[15]  Y. Hai, S. Jiang, X. Qian, S. Zhang, P. Sun, B. Xie, N. Hong, J. Colloid Interface Sci. 2018, 509, 285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsV2ltrzN&md5=536ee9154fc9a0be45bd21e47c0c8aebCAS |

[16]  J. Wang, Y. Li, M. Huang, J. Fang, C. Wang, Polym. Compos. 2014, 35, 1553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCjsb%2FI&md5=17a386fc8f3982927457960fbdfcac65CAS |

[17]  C. Zhang, M. Pan, L. Qu, G. Sun, Polym. Adv. Technol. 2015, 26, 1531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVehsLrN&md5=fb3494c51c6299a829a41b12a21adba2CAS |

[18]  L. P. Gao, G. Y. Zheng, X. A. Nie, Y. G. Wang, J. Therm. Anal. Calorim. 2017, 127, 1419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvFamt7c%3D&md5=a05b81c8a504082ba99bc0b32e10d50eCAS |

[19]  S. V. Levchik, E. D. Weil, J. Fire Sci. 2006, 24, 345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrur7P&md5=93c1da37be5c5cec2b71a0f5255568eaCAS |

[20]  Q. Li, P. K. Jiang, P. Wei, Polym. Eng. Sci. 2006, 46, 344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitF2ktL0%3D&md5=f79da2cbd8b0612ea0b1a7052bf8f39cCAS |

[21]  R. Ménard, C. Negrell-Guirao, L. Ferry, R. Sonnier, G. David, Eur. Polym. J. 2014, 57, 109.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Gao, Y. Liu, S. Y. Feng, Z. J. Lu, J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 2390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntFalsrw%3D&md5=b236c075eba62d88d518f9e56ebf7737CAS |

[23]  L. G. Lu, X. D. Qian, Z. J. Zeng, S. S. Yang, G. S. Shao, H. Y. Wang, J. Jin, X. N. Xu, J. Appl. Polym. Sci. 2017, 134, 45105.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. Ma, S. L. Qiu, B. Yu, J. L. Wang, C. M. Wang, W. R. Zeng, Y. Hu, Chem. Eng. J. 2017, 322, 618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntFKqtbY%3D&md5=26de0f411b1929eb95c27064d190b0aeCAS |

[25]  D. K. Chattopadhyay, D. C. Webster, Prog. Polym. Sci. 2009, 34, 1068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ntLrJ&md5=e87ff6740dae6751198472e26f2112efCAS |

[26]  I. van der Veen, J. de Boer, Chemosphere 2012, 88, 1119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFagtr8%3D&md5=b812045067d026d14cde89d6d88409cfCAS |

[27]  C. L. Zhang, M. Pan, L. J. Qu, G. E. Sun, Polym. Adv. Technol. 2015, 26, 1531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVehsLrN&md5=fb3494c51c6299a829a41b12a21adba2CAS |

[28]  R. Liu, X. D. Wang, Polym. Degrad. Stabil. 2009, 94, 617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ahtLw%3D&md5=ee03d7bab058483e679bcf8811770772CAS |

[29]  C. L. Zhang, M. Pan, L. J. Qu, G. E. Sun, Polym. Adv. Technol. 2015, 26, 1531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVehsLrN&md5=fb3494c51c6299a829a41b12a21adba2CAS |

[30]  G. H. Hsiue, Y. L. Liu, J. Tsiao, J. Appl. Polym. Sci. 2000, 78, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2msL4%3D&md5=28354cc6f86b1d1c6dd81957863ab926CAS |

[31]  Z. Qin, D. Li, Q. Li, R. Yang, Mater. Des. 2016, 89, 988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslWrs7jN&md5=02fb8d837d860651ea78ea5e5ef32ccfCAS |

[32]  Z.-s. Xu, L. Yan, L. Chen, Procedia Eng. 2016, 135, 631.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. Elbasuney, Powder Technol. 2017, 305, 538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslGiu7jM&md5=dd614461a7260739abb0d39e307a35a4CAS |

[34]  Y. Kiuchi, M. Iji, T. Yanagisawa, T. Shukichi, Polym. Degrad. Stabil. 2014, 109, 336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslGgtLY%3D&md5=e040b99c84f615e86f0f8a0de1c875f9CAS |

[35]  R. Sonnier, A. Viretto, L. Dumazert, M. Longerey, S. Buonomo, B. Gallard, C. Longuet, F. Cavodeau, R. Lamy, A. Freitag, Polym. Degrad. Stabil. 2016, 128, 228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xltleis7g%3D&md5=dd4466de23d6781a436c60b93fa0b821CAS |

[36]  M. Pan, R. Huang, T. T. Wang, D. Y. Huang, J. X. Mu, C. L. Zhang, High Perform. Polym. 2014, 26, 114.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Z.-Y. Wang, Y. Liu, Q. Wang, Polym. Degrad. Stabil. 2010, 95, 945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCqsLc%3D&md5=53b7c3c3b5ba3bd33a52c4ef590e6079CAS |

[38]  N. Sun, L. J. Qian, G. Z. Xu, F. Xin, China Sci. 2016, 44, 11.
         | 1:CAS:528:DC%2BC28XitFKisLrK&md5=21a117c5fcc03b55e85fbedcb3fec693CAS |

[39]  F. Wang, J. W. Hao, Z. S. Li, H. F. Zou, Acta Polym. Sin. 2016, 7, 860.
         | 1:CAS:528:DC%2BC2MXhvVOgur7K&md5=86712562b213198572e16ab05e07faf6CAS |

[40]  S. Yang, J. Wang, S. Q. Huo, M. Wang, J. P. Wang, B. Zhang, Polym. Degrad. Stabil. 2016, 128, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksVylu7o%3D&md5=bbf6390c212b1651920e4a44f1f7d957CAS |

[41]  M. Pan, Study on Preparation and Flame Retardant Properties of Silicon/Phosphorous Epoxy Resin Composites 2015, M.Eng. thesis, Jilin University, China.