Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Two Coordination Polymers Constructed from Pentanuclear Zinc Clusters with Triazolate and Benzenecarboxylate Ligands: Selective Gas Adsorption

Wen-Wen Zhang A , Yu-Ling Wang A B , Ying Liu A and Qing-Yan Liu A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, and Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.

B Corresponding authors. Email: ylwang@jxnu.edu.cn; qyliuchem@hotmail.com

Australian Journal of Chemistry 71(3) 111-118 https://doi.org/10.1071/CH17498
Submitted: 9 September 2017  Accepted: 19 October 2017   Published: 9 November 2017

Abstract

Reactions of Zn(NO3)2·6H2O with 1,2,4-triazole (Htrz) and 1,3,5-benzenetricarboxylic acid (H3BTC) or 5-sulfoisophthalic acid (5-H3SIP) afforded two coordination polymers, {[Zn53-OH)2(trz)2(BTC)2(DMF)2x(solvent)}n (1) and {[Zn7(trz)8(5-SIP)2(H2O)4]·4(H2O)}n (2). Compound 1 has pentanuclear [Zn53-OH)2] clusters, which are linked by the triazolate ligands to give a 2D layer. The 2D layer is further bridged by BTC3− ligands to form a 3D framework. The 3D framework of 1 has 1D channels filled by solvent molecules. Desolvated 1 shows a moderate CO2 uptake and high CO2/CH4 and CO2/N2 adsorption selectivities due to its carboxylate oxygen decorated pore environment. Compound 2 contains a rare 3D zinc-triazolate framework constructed from a pentanuclear [Zn5(trz)8] cluster wherein the five zinc atoms are arranged linearly. The 3D zinc-triazolate substructure has 1D open channels filled by 5-SIP3− ligands, which interact with the zinc-triazolate framework through Zn–O bonds, leading to a non-porous 3D structure of 2. Introduction of BTC3− into the zinc-triazolate system gave the porous structure of 1. While a variation of BTC3−, 5-SIP3− was introduced into the zinc-triazolate system yielding a non-porous structure of 2, demonstrating that the secondary ligands play an important role in the formation of the final structures.


References

[1]  (a) G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, O. M. Yaghi, Nat. Rev. Mater. 2017, 2, 17045.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OnsbbL&md5=d1ca3bd10b625ce633a9cc51ffe508a6CAS |
      (b) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Q. Gao, J. Xu, D. Cao, Z. Chang, X.-H. Bu, Angew. Chem. Int. Ed. 2016, 55, 15027.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. Wang, J. Xu, D.-S. Zhang, Q. Chen, R.-M. Wen, Z. Chang, X.-H. Bu, Angew. Chem. Int. Ed. 2015, 54, 5966.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Z. Chang, D.-H. Yang, J. Xu, T.-L. Hu, X.-H. Bu, Adv. Mater. 2015, 27, 5432.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7Y%3D&md5=5797f8ce9435da90f34dcac884b76ff7CAS |
      (b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Yoon, R. Srirambalaji, K. Kim, Chem. Soc. Rev. 2012, 112, 1196.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKntbg%3D&md5=b8df880c8e6514346ee2fc6d0fe537efCAS |
      (b) J. M. Taylor, K. W. Dawson, G. K. H. Shimizu, J. Am. Chem. Soc. 2013, 135, 1193.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L.-J. Zhou, W.-H. Deng, Y.-L. Wang, G. Xu, S.-G. Yin, Q.-Y. Liu, Inorg. Chem. 2016, 55, 6271.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) K.-L. Wong, G.-L. Law, Y.-Y. Yang, W.-T. Wong, Adv. Mater. 2006, 18, 1051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksV2itLo%3D&md5=89c53426334ed413336eb556990a866dCAS |
      (b) Z.-L. Wu, J. Dong, W.-Y. Ni, B.-W. Zhang, J.-Z. Cui, B. Zhao, Inorg. Chem. 2015, 54, 5266.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Zang, T. C. W. Mak, J. Mater. Chem. A 2015, 3, 641.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chem. Rev. 2012, 112, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsrnE&md5=462bd5e1334068c6f647cd72a5c2881cCAS |

[7]  (a) A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlegu77O&md5=b47c43be2fa5b85ad448b083a0715db8CAS |
      (b) V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchic, J. R. Long, Chem. Sci. 2011, 2, 1311.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) Y.-Y. Lin, Y.-B. Zhang, J.-P. Zhang, X.-M. Chen, Cryst. Growth Des. 2008, 8, 3673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOqtLzP&md5=2981155d80eabacfce7f6ca5603612a7CAS |
      (b) H. Park, J. F. Britten, U. Mueller, J. Lee, J. Li, J. B. Parise, Chem. Mater. 2007, 19, 1302.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Park, D. M. Moureau, J. B. Parise, Chem. Mater. 2006, 18, 525.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y.-L. Zhang, S.-P. Chen, S.-L. Gao, Z. Anorg. Allg. Chem. 2009, 635, 537.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) K.-J. Chen, R.-B. Lin, P.-Q. Liao, C.-T. He, J.-B. Lin, W. Xue, Y.-B. Zhang, J.-P. Zhang, X.-M. Chen, Cryst. Growth Des. 2013, 13, 2118.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Q.-G. Zhai, Q. Lin, T. Wu, L. Wang, S.-T. Zheng, X. Bu, P. Feng, Chem. Mater. 2012, 24, 2624.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Z. Yao, Y. Chen, L. Liu, X. Wu, S. Xiong, Z. Zhang, S. Xiang, ChemPlusChem 2016, 81, 850.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y.-L. Wang, J.-H. Fu, Y.-L. Jiang, Y. Fu, W.-L. Xiong, Q.-Y. Liu, CrystEngComm 2012, 14, 7245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCgurbF&md5=0891fcf2b3146d2c7618b3cd9f84bfeaCAS |

[10]  A. L. Spek, PLATON: A Multipurpose Crystallographic Tool 2001 (Utrecht University: Utrecht, The Netherlands).

[11]  Y. Chen, L. Wang, L. Zhang, D. Zhang, X. Jing, Y. Fan, H. Ren, J. Jiang, P. Zhang, J. Xu, Inorg. Chim. Acta 2010, 363, 3874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gtLrF&md5=3fb43dd3712274a06b343cab302cebaaCAS |

[12]  A. J. Lan, K. H. Li, H. H. Wu, L. Z. Kong, N. Nijem, D. H. Olson, T. J. Emge, Y. J. Chabal, D. C. Langreth, M. C. Hong, J. Li, Inorg. Chem. 2009, 48, 7165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2lsrc%3D&md5=0256cb8bfdb86ab6221fb9b537a24048CAS |

[13]  L. Bastin, P. S. Barcia, E. J. Hurtado, J. A. C. Silva, A. E. Rodrigues, B. Chen, J. Phys. Chem. C 2008, 112, 1575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFOnsQ%3D%3D&md5=db142d091623bf42c7a229cc10a46c66CAS |

[14]  J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009, 131, 8376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kntbw%3D&md5=b61e2bc9e8b71cc212cb2e336407a5a8CAS |

[15]  A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc. 2009, 131, 8784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFWqtrY%3D&md5=fdb853828dcf1d3b707fe62890a8ecbaCAS |

[16]  (a) Q. Y. Yang, C. L. Zhong, J. Phys. Chem. B 2006, 110, 17776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Cgs7g%3D&md5=eddc6a8291dc1816a8dbbdcfd2f45e29CAS |
      (b) R. Babarao, Z. Q. Hu, J. W. Jiang, S. Chempath, S. I. Sandler, Langmuir 2007, 23, 659.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXnvVKmsA%3D%3D&md5=a636b25219690d135b3b1a0b68e6bbc3CAS |

[18]  B. Wang, A. P. Côté, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Nature 2008, 453, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12msL0%3D&md5=0f02e8b0efd2a401d72d1f2c770bf952CAS |

[19]  D. Saha, Z. B. Bao, F. Jia, S. G. Deng, Environ. Sci. Technol. 2010, 44, 1820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslShtb4%3D&md5=af836f3df7e0d9920c2f03195bbdbd48CAS |

[20]  Z. H. Xiang, X. Peng, X. Cheng, X. J. Li, D. P. Cao, J. Phys. Chem. C 2011, 115, 19864.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylurvM&md5=046c33343531833b82183b8b729048c4CAS |

[21]  Y.-W. Li, J. Xu, D.-C. Li, J.-M. Dou, H. Yan, T.-L. Hu, X.-H. Bu, Chem. Commun. 2015, 51, 14211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Gmu7vN&md5=070c6a5849363e47326e39e640b4f39aCAS |

[22]  F. Akhtar, Q. L. Liu, N. Hedinab, L. Bergström, Energy Environ. Sci. 2012, 5, 7664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslagu78%3D&md5=649707284524ed5e7554133768d8e6f3CAS |

[23]  (a) J. R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H. K. Jeong, P. B. Balbuena, H. C. Zhou, Coord. Chem. Rev. 2011, 255, 1791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGgur8%3D&md5=f48b6329db0fddff029c29e722491e74CAS |
      (b) T. Panda, P. Pachfule, Y. F. Chen, J. W. Jiang, R. Banerjee, Chem. Commun. 2011, 47, 2011.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev. 2012, 41, 2308.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Mu, D. H. Liu, Q. Y. Yang, C. L. Zhong, Microporous Mesoporous Mater. 2010, 130, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  APEX2, SADABS and SAINT 2008 (Bruker AXS Inc.: Madison, WI).

[25]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |