Quantum-Chemical Ab Initio Calculations on Inda- and Thallabenzene (C5H5In and C5H5Tl) and their Structural Isomers η5-C5H5In and η5-C5H5Tl*
Emma Persoon A , Yuekui Wang B C and Gerhard Raabe A CA Department of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
B Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China.
C Corresponding authors. Email: ykwang@sxu.edu.cn; gerd.raabe@thc.rwth-aachen.de
Australian Journal of Chemistry 71(3) 102-110 https://doi.org/10.1071/CH17472
Submitted: 17 August 2017 Accepted: 17 October 2017 Published: 17 November 2017
Abstract
Quantum-chemical ab initio, time-independent, as well as time-dependent density functional theory (TD-DFT) calculations were performed on the so far elusive heterocycles inda- and thallabenzene (C5H5In and C5H5Tl), employing several different methods (MP2, CISD, CCSD, CCSD(T), BD, BD(T), QCISD, QCISD(T), CASSCF, DFT/B3LYP), effective core potentials, and different basis sets. While calculations on the MP2 level predict the ground states of the title compounds to be singlets with the first triplet states between 13 and 15 kcal mol−1 higher in energy, single point calculations with the QCISD(T), CCSD(T), and BD(T) methods at CCSD-optimized structures result in energy differences between the singlet and the triplet states in the range between 0.3 and 2.1 kcal mol−1 in favour of the triplet states. According to a CASSCF(8,8) calculation the triplets are also more stable by about 2.5–2.9 kcal mol−1. Calculations were also performed for the C5v-symmetric η5 structural isomers (cyclopentadienylindium, CpIn, and cyclopentadienylthallium, CpTl, Cp = C5H5) of the title compounds. At the highest level of theory employed in this study, C5H5In is between 79 and 88 kcal mol−1 higher in energy than CpIn, while this energy difference is even larger for thallabenzene where C5H5Tl is energetically between 94 and 102 kcal mol−1 above CpTl. In addition we report on the UV/vis spectra calculated with a TD-DFT method as well as on the spectra of the normal modes of C5H5In and C5H5Tl. Both types of spectra might facilitate identification of the title compounds eventually formed in photolysis or pyrolysis experiments.
References
[1] G. Raabe, E. Heyne, W. Schleker, J. Fleischhauer, Z. Naturforsch. A 1984, 39, 678.[2] G. Raabe, W. Schleker, E. Heyne, J. Fleischhauer, Z. Naturforsch. A 1987, 42, 352.
| 1:CAS:528:DyaL2sXitVChsbs%3D&md5=4f84099d2fe85713f62adef12516e54fCAS |
[3] G. Raabe, M. Baldofski, Aust. J. Chem. 2011, 64, 957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyitrs%3D&md5=83d2c055202d623d868099b2c5e4b099CAS |
[4] S. Mersmann, H. Mouhib, M. Baldofski, G. Raabe, Z. Naturforsch. A 2014, 69, 349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1CgtbjO&md5=fbfdb518ecde92a45d1b80cc152c6847CAS |
[5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).
[6] J. H. Wood, A. M. Boring, Phys. Rev. B 1978, 18, 2701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXht1Gluw%3D%3D&md5=ff24689c8d6ec9843aec37e55b5323b4CAS |
[7] (a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWgu7o%3D&md5=7e176a704125fa22ee6e2e2a691ef7fdCAS |
(b) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=b1484c182ec63e15f553794f7716228cCAS |
(b) R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. A. Peterson, D. E. Woon, T. H. Dunning, J. Chem. Phys. 1994, 100, 7410.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. K. Wilson, T. van Mourik, T. H. Dunning, J. Mol. Struct. THEOCHEM 1996, 388, 339.
| Crossref | GoogleScholarGoogle Scholar |
[9] Chr Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXislSqsw%3D%3D&md5=ff938406e91c1e29a40406dbb528aab7CAS |
[11] (a) J. Čížek, Adv. Chem. Phys. 1969, 14, 35.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. E. Scuseria, H. F. Schaefer, J. Chem. Phys. 1989, 90, 3700.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, G. W. Trucks, Chem. Phys. Lett. 1989, 164, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXosVertw%3D%3D&md5=cae91992e1ceb6d871fe1a03cfc0934fCAS |
(b) J. D. Watts, R. J. Bartlett, Int. J. Quantum. Chem. 1994, 52, 195.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXislSqsw%3D%3D&md5=ff938406e91c1e29a40406dbb528aab7CAS |
[14] See for example: C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications 2013 (Oxford University Press: Oxford).
[15] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=afb19c37760afcb29a851accb1c280b9CAS |
(b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. Brown, C. M. Kemp, S. F. Mason, J. Chem. Soc. A 1971, 751.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. J. Lee, P. R. Taylor, Int. J. Quantum. Chem. 1989, 36, 199.
[18] E. O. Fischer, H. P. Hofmann, Angew. Chem. 1957, 69, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXitFeq&md5=3e8bea0233798063e8f0a63750d0ff20CAS |
[19] E. O. Fischer, Angew. Chem. 1957, 69, 207.
| Crossref | GoogleScholarGoogle Scholar |
[20] H. Meister, Angew. Chem. 1957, 69, 533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXptFCitA%3D%3D&md5=30f78c2a8a421ae11b1a0553829b85d1CAS |
[21] E. Frasson, F. Menegus, C. Panattoni, Nature 1963, 199, 1087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXkvVSjtr0%3D&md5=68515d03011002908a887b96fe128a95CAS |
[22] O. T. Beachley, J. C. Pazik, T. E. Glassman, M. R. Churchill, J. C. Fettinger, R. Blom, Organometallics 1988, 7, 1051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVCltb8%3D&md5=440d89f8ac9b9c47ce2479ee3ef96fa5CAS |
[23] J. K. Tyler, A. P. Cox, J. Sheridan, Nature 1959, 183, 1182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXoslOlug%3D%3D&md5=473e749f018b7fdc55493da0778aee9eCAS |
[24] S. Shibata, L. S. Bartell, R. M. Gavin, J. Chem. Phys. 1964, 41, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktlOiu7g%3D&md5=6523acca1f22e3dc64536546da497741CAS |
[25] F. A. Cotton, L. T. Reynolds, J. Am. Chem. Soc. 1958, 80, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXlsVejtA%3D%3D&md5=a8dd82817b392ee66a115c021d7f0434CAS |
[26] P. H. M. Budzelaar, J. Boersma, Recl. Trav. Chim. Pays Bas 1990, 109, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1equr4%3D&md5=c31e8bc22a1940c196232e8f0c94b763CAS |
[27] W. J. Pietro, E. S. Blurock, R. F. Hout, W. J. Hehre, D. J. DeFrees, R. F. Stewart, Inorg. Chem. 1981, 20, 3650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlsFKqu7o%3D&md5=c49f4774ebbbfd24dfcea07badb84b3bCAS |
[28] E. Canadell, O. Eisenstein, J. Rubio, Organometallics 1984, 3, 759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhslCqtLc%3D&md5=c4b90ea2212e5d4571e4b959ef921732CAS |