Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Superoxide Anion Biosensor Based on Bionic-Enzyme Hyperbranched Polyester Particles

Yanlian Niu A C , Sisheng Hu A B C , Qian Zhou A , Yang Liu A , Yuhong Liu A , Jing Zhao B , Mimi Wan A , Wenbo Zhao A D and Jian Shen A D
+ Author Affiliations
- Author Affiliations

A National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

B State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.

C Y. Niu and S. Hu contributed equally to this work.

D Corresponding authors. Email: zhaowenbo@njnu.edu.cn; jshen@njnu.edu.cn.

Australian Journal of Chemistry 71(3) 119-126 https://doi.org/10.1071/CH17420
Submitted: 22 July 2017  Accepted: 26 October 2017   Published: 8 December 2017

Abstract

Self-assembly techniques have been demonstrated to be a useful approach to developing new functional nanomaterials. In this study, a novel method to fabricate a manganese phosphate self-assembly monolayer (SAM) on a hyperbranched polyester (HBPE-OH) nanoparticle surface is described. First, the second-generation aliphatic HBPE-OH was carboxy-terminated, phosphorylated, and then ionized with manganese by a three-step modification process. The final product of HBPE-AMPA-Mn2+ particles was obtained and characterised by FT-IR spectroscopy, 1H NMR spectroscopy, transmission electron microscopy (TEM), Zeta potential, and energy dispersive spectroscopy (EDS). Moreover, the HBPE-AMPA-Mn2+ particles were used to construct a novel biosensor for detection of superoxide anions (O2•−) released from HeLa cells. Results showed that the response currents of this biosensor were proportional to the O2•− concentration ranging from 0.79 to 16.6 μM, and provided an extremely low detection limit of 0.026 μM (S/N = 3). The results indicate that the particle-decorated electrode surface, which involved a hyperbranched structure and a surface self-assembly technology, proposed here will offer the ideal catalytic system for electrochemical enzymatic sensors.


References

[1]  J. J. Xu, W. W. Zhao, S. Song, C. Fan, H. Y. Chen, Chem. Soc. Rev. 2014, 43, 1601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWhtrw%3D&md5=aaca7ab5a7e4f83265327e5183cebfceCAS |

[2]  A. Chen, S. Chatterjee, Chem. Soc. Rev. 2013, 42, 5425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ersr0%3D&md5=a25f60b5979d7b9cb86217afb3ec48b6CAS |

[3]  J. Lv, F. Wang, J. Qiang, X. Ren, Y. Chen, Z. Zhang, Y. Wang, W. Zhang, X. Chen, Biosens. Bioelectron. 2017, 87, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtleisb7L&md5=41ced53350f6ec5aa5f7ca8d970c64b1CAS |

[4]  M. Pumera, S. Sánchez, I. Ichinose, J. Tang, Sensor. Actuat. B 2007, 123, 1195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFOgurs%3D&md5=3d2d184885cf6f6ebfdf20b63ef6c8c1CAS |

[5]  A. P. F. Turner, Chem. Soc. Rev. 2013, 42, 3184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFemsLk%3D&md5=9c440b086ec7144af0981066ff61bd9dCAS |

[6]  X. B. Wang, J. J. Miao, Q. Xia, K. Yang, X. H. Huang, W. B. Zhao, J. Shen, Electrochim. Acta 2013, 112, 473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSku7jF&md5=91951750105cbacb931869af45398b4cCAS |

[7]  J. M. Huang, G. Henihan, D. Macdonald, A. Michalowski, K. Templeton, A. P. Gibb, H. Schulze, T. T. Bachmann, Anal. Chem. 2015, 87, 7738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtV2ju7rK&md5=e9fda2abcda9203e952e25cc812d8334CAS |

[8]  B. Yang, D. Bin, H. Wang, M. Zhu, P. Yang, Y. Du, Colloids Surf. A 2015, 481, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsF2gsb4%3D&md5=3fa1f69a7fbd91f4122cd6d710f6074fCAS |

[9]  X. Qin, S. Xu, L. Deng, R. Huang, X. Zhang, Biosens. Bioelectron. 2016, 85, 957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVOgurzK&md5=83e76d2dc3c5286449724eebfbaa06ddCAS |

[10]  W. Gao, H. Dong, J. Lei, H. Ji, H. Ju, Chem. Commun. 2011, 47, 5220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKruro%3D&md5=c9d0bb2caff7b59222c4c419db52716dCAS |

[11]  X. B. Wang, J. J. Miao, X. B. Shao, C. Mao, J. Shen, J. Colloid Interface Sci. 2014, 420, 88.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVCjtrY%3D&md5=48186e59cb2c1770aa5f4b8d9899d1c3CAS |

[12]  J. A. Alfurhood, P. R. Bachler, B. S. Sumerlin, Polym. Chem. 2016, 7, 3361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvVOht7g%3D&md5=1410f5edeb2fd39047efda1ce55a30dcCAS |

[13]  R. Barbey, S. Perrier, ACS Macro Lett. 2013, 2, 366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVylsL8%3D&md5=bd82c1a2ee53a707c235ad2130299383CAS |

[14]  Y. Y. Zhuang, H. P. Deng, Y. Su, L. He, R. B. Wang, G. S. Tong, D. N. He, X. Y. Zhu, Biomacromolecules 2016, 17, 2050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsFOmsbo%3D&md5=cf15001ab71ba2380436ba11629724eaCAS |

[15]  H. Jin, W. Huang, X. Zhu, Y. Zhou, D. Yan, Chem. Soc. Rev. 2012, 41, 5986.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqsbjM&md5=d1f70a26e615b0197b64a4c04569e888CAS |

[16]  C. Sun, Q. Han, D. Wang, W. Xu, W. Wang, W. Zhao, M. Zhou, Anal. Chim. Acta 2014, 850, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKkt73K&md5=66120dd2267bd14511faa4a1a15c50a5CAS |

[17]  C. Sun, X. Chen, Q. Han, M. Zhou, C. Mao, Q. Zhu, J. Shen, Anal. Chim. Acta 2013, 776, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVCrsb0%3D&md5=183bb8615ab3e8d6d62566e308894622CAS |

[18]  G. Shen, C. Cai, K. Wang, J. Lu, Anal. Biochem. 2011, 409, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGhs7fE&md5=c5d87e864e3fde11e85efd22bc5a3351CAS |

[19]  J. Lv, F. Wang, T. Wei, X. Chen, Ind. Eng. Chem. Res. 2017, 56, 3757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkt1Shtr8%3D&md5=966d6dc25ce44746c531a0e09b5e703eCAS |

[20]  X. Chen, K. A. Lee, X. Ren, J. C. Ryu, G. Kim, J. H. Ryu, W. J. Lee, J. Yoon, Nat. Protoc. 2016, 11, 1219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsFClsbw%3D&md5=b6a1c92ae4931fcb7841cba632784035CAS |

[21]  F. X. Hu, Y. J. Kang, F. Du, L. Zhu, Y. H. Xue, T. Chen, L. M. Dai, C. M. Li, Adv. Funct. Mater. 2015, 25, 5924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVSjtL3P&md5=07e217c76bac4d53d96fa46cf9d3d468CAS |

[22]  Z. Deng, Q. Rui, X. Yin, H. Liu, Y. Tian, Anal. Chem. 2008, 80, 5839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFKjs7s%3D&md5=f9dd301956a681a25a3ddc01872d58c7CAS |

[23]  K. Barnese, E. B. Gralla, D. E. Cabelli, J. S. Valentine, J. Am. Chem. Soc. 2008, 130, 4604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlShurc%3D&md5=3f8c6af4ae97a53a03d40f699fe07168CAS |

[24]  X. Ma, W. Hu, C. Guo, L. Yu, L. Gao, J. Xie, C. M. Li, Adv. Funct. Mater. 2014, 24, 5897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOjsbbP&md5=a3b73e47953500d27f9ee621d3e40ca5CAS |

[25]  L. Yuan, S. Liu, W. Tu, Z. Zhang, J. Bao, Z. Dai, Anal. Chem. 2014, 86, 4783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFChsbw%3D&md5=1f0cf68f78d8fc7c199f8a592b43b23fCAS |

[26]  J. Han, J. Zhang, M. Yang, D. Cui, J. M. de la Fuente, Nanoscale 2016, 8, 492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFClu73M&md5=68930542bacb73db6a5e91892b01c859CAS |

[27]  A. Asif, W. F. Shi, Eur. Polym. J. 2003, 39, 933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvV2hu74%3D&md5=5eb82963a98a15c050ab944ee1041d03CAS |

[28]  Q. R. Han, X. H. Chen, Y. L. Niu, B. Zhao, B. X. Wang, C. Mao, L. B. Chen, J. Shen, Langmuir 2013, 29, 8402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVeht7Y%3D&md5=86a8a6edff9747f40bfc867880d1a5adCAS |

[29]  M. Sivakumar, K. P. Rao, Biomaterials 2002, 23, 3175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVGisLo%3D&md5=826e45b17873df21553b955ba2a0221dCAS |

[30]  M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, D. Uskokovic, Cryst. Growth Des. 2008, 8, 2217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1WjsLk%3D&md5=ba579baa0eb16081c0fcde81ec0485c4CAS |

[31]  R. Murugan, S. Ramakrishna, J. Cryst. Growth 2005, 274, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlWm&md5=d8bded2e4f47232e03f8bb4450d1bff3CAS |

[32]  A. Ficai, E. Andronescu, G. Voicu, C. Ghitulica, B. S. Vasile, D. Ficai, V. Trandafir, Chem. Eng. J. 2010, 160, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVyqu7s%3D&md5=329190cefae9d59b4b228aa0669f3444CAS |

[33]  F. H. Chen, Q. Gao, J. Z. Ni, Nanotechnology 2008, 19, 165103.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjkslWgtA%3D%3D&md5=afa3d5253bb09bbc586971130ef6b27aCAS |

[34]  A. G. González, D. Rosales, J. L. Gómez-Ariza, J. F. Sanz, Anal. Chim. Acta 1990, 228, 301.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. A. Fadeeva, L. P. Safonova, J. Solution Chem. 2011, 40, 980.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVOqtrc%3D&md5=1f13d5062f4e387aff2bd7a924a027a2CAS |

[36]  L. P. Safonova, Y. A. Fadeeva, A. A. Pryakhin, J. Phys. Chem. A 2009, 83, 1747.
         | 1:CAS:528:DC%2BD1MXhtFOrs73O&md5=87b3036b0eec0300732c5fb046290547CAS |

[37]  C. M. Duan, D. B. Luo, R. Shang, Z. E. Lin, CrystEngComm 2013, 15, 5602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVShsrfI&md5=7b4168d547b31745686c973ea181e19cCAS |

[38]  Y. P. Luo, Y. Tian, Q. Rui, Chem. Commun. 2009, 21, 3014.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  O. H. Pomeroy, M. Wendland, S. Wagner, N. Derugin, W. W. Holt, S. M. Rocklage, S. Quay, C. B. Higgins, Invest. Radiol. 1989, 24, 531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltFWksrY%3D&md5=f75b19f025b232033056b60bc171cbb1CAS |

[40]  G. Preda, A. Migani, K. M. Neyman, S. T. Bromley, F. Illas, G. Pacchioni, J. Phys. Chem. C 2011, 115, 5817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCntr0%3D&md5=4a3d031f32664e1334f95d2cce242e2fCAS |

[41]  J. Jiang, W. Fan, X. Du, Biosens. Bioelectron. 2014, 51, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGqs7bP&md5=c3a89c9150eb0bc6de58834b01d79258CAS |

[42]  P. Santhosh, K. M. Manesh, S. H. Lee, S. Uthayakumar, A. I. Gopalana, K. P. Lee, Analyst 2011, 136, 1557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFaqsbc%3D&md5=865df6c4fc31dafa1bae3676edc1fa9dCAS |

[43]  H. Liu, Y. Tian, P. Xia, Langmuir 2008, 24, 6359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFSgtrY%3D&md5=f6877cdedcc7675c0ba1c39a7eb5da31CAS |

[44]  X. Zhu, T. Liu, H. Zhao, L. Shi, X. Li, M. Lan, Biosens. Bioelectron. 2016, 79, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlOisA%3D%3D&md5=534adf1f089aa0a892394331783d88adCAS |

[45]  J. Q. Zhou, Y. P. Luo, A. W. Zhu, Y. Liu, Z. R. Zhu, Y. Tian, Analyst 2011, 136, 1594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFaqtro%3D&md5=6181c3616eba00c04aae9465b861b130CAS |

[46]  T. Liu, X. Niu, L. Shi, X. Zhu, H. Zhao, M. Lan, Electrochim. Acta 2015, 176, 1280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVajtbnK&md5=5823cf8ae2cd809ced365ca6edd7f125CAS |

[47]  J. Tang, X. Zhu, X. Niu, T. Liu, H. Zhao, M. Lan, Talanta 2015, 137, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOjtLs%3D&md5=7d1bdedc403ea51b5433cfe7310b441cCAS |

[48]  L. Ma, J. Zhou, Neurochem. Res. 2006, 31, 463.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  Z. Q. Shi, Y. F. Zhou, D. Y. Yan, Macromol. Rapid Commun. 2008, 29, 412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVKlsrc%3D&md5=56874ee949a986e0de52c73e4981bebcCAS |

[50]  C. Sun, L. Ma, Q. H. Qian, S. Parmar, W. B. Zhao, B. Zhao, J. Shen, Analyst 2014, 139, 4216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamu7bL&md5=25cb586d9398c74793050dc85234d094CAS |

[51]  J. M. Rosas, R. Ruiz-Rosas, R. Berenguer, D. Cazorla-Amorós, E. Morallón, H. Nishihara, T. Kyotani, J. Rodríguez-Mirasol, T. Corderob, J. Mater. Chem. A 2016, 4, 4610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivFKmu7g%3D&md5=8da70eeda47947f3a71909dc38057433CAS |

[52]  D. M. Yu, T. H. Kim, J. Y. Lee, S. Yoon, Y. T. Hong, Electrochim. Acta 2015, 173, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotFeis7c%3D&md5=75f6d9d6b64616614dc60c78e0186878CAS |

[53]  H. Akbulut, G. Bozokalfa, D. N. Asker, B. Demir, E. Guler, D. O. Demirkol, S. Timur, Y. Yagci, ACS Appl. Mater. Interfaces 2015, 7, 20612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWmsrrP&md5=f1f9abef301c750205142717c8d1ae3fCAS |