An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel via Schiff Base Reaction
Xueying Sheng A , Xian Li A , Mengting Li A , Renyi Zhang A , Shuang Deng A , Wangkai Yang A , Guanjun Chang A and Xu Ye A BA School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
B Corresponding author. Email: yexu@swust.edu.cn
Australian Journal of Chemistry 71(1) 74-79 https://doi.org/10.1071/CH17214
Submitted: 20 April 2017 Accepted: 8 September 2017 Published: 10 October 2017
Abstract
A series of injectable hydrogels was prepared by cross-linking oxidized carboxymethyl cellulose (oxi-CMC) with polyacryloyl hydrazide (PAH) via a Schiff base reaction under physiological conditions. The hydrogels exhibited superior performance such as appropriate rheology properties, high swelling ratio, and low degradation rate. In phosphate buffer solution (PBS, pH 7.4) at 37°C, the swelling ratio of the hydrogels ranged from 19 to 28 after 7 h, the degradation percentage of the oxi-CMC6/PAH3 hydrogel was ~47 % after 20 days. Using bovine serum albumin (BSA) as a model protein drug, the results of in vitro drug release studies demonstrated that the sustained release of BSA could be cooperatively controlled through drug diffusion and hydrogel degradation in PBS (pH 7.4) at 37°C, and the cumulative release percentage of BSA from a drug-loaded oxi-CMC6/PAH3 hydrogel was ~88 % after 8 days. The results signified that oxi-CMC6/PAH3 hydrogel could be potentially applied in the fields of drug delivery vehicles, tissue engineering, and cell encapsulation materials.
References
[1] W. A. Laftah, S. Hashim, A. N. Ibrahim, Polym.-Plast. Technol. Eng. 2011, 50, 1475.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gnu7zL&md5=8b8f5d69d67329f665ff94d3ccf036baCAS |
[2] M. J. Zohuriaan-Mehr, H. Omidian, S. Doroudiani, K. Kabiri, J. Mater. Sci. 2010, 45, 5711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Ghsb8%3D&md5=4bc32d31ca55e2fc1c78797fc933abd4CAS |
[3] M. Malmsten, Soft Matter 2011, 7, 8725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyqu7jF&md5=a81987befb2fd0eeb9d474bbacea649dCAS |
[4] S. Van Vlierberghe, P. Dubruel, E. Schacht, Biomacromolecules 2011, 12, 1387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvF2qs7s%3D&md5=8fe54fb30ab6c895a2eb078e38ed3bf7CAS |
[5] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt, H.-J. P. Adler, Sensors 2008, 8, 561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFensr8%3D&md5=515a50412918c2247b952a9e4240cde4CAS |
[6] Y. J. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong, Biomaterials 2014, 35, 4969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvVGks74%3D&md5=5fbb755c51d4de88a6c22f1af5a3b572CAS |
[7] M. S. Bae, N. R. Ko, S. J. Lee, J. B. Lee, D. N. Heo, W. Byun, B. J. Choi, H. B. Jeon, H. J. Jang, J. Y. Ahn, D. S. Hwang, B. Y. Jung, I. K. Kwon, Macromol. Res. 2016, 24, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlKrtLnP&md5=b608fb6f5113be9df7ebc2dc5931099aCAS |
[8] Y. Liu, L. J. Duan, M. J. Kim, J. H. Kim, D. J. Chung, Macromol. Res. 2014, 22, 240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1agu7%2FE&md5=3a6822590e0347a9c7925abc0604373bCAS |
[9] J. Z. Ma, X. L. Li, Y. Bao, RSC Adv. 2015, 5, 59745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtV2ltbvP&md5=51d1642c6d4358fb7f8d381caaf50d13CAS |
[10] P. Chitprasert, P. Sutaphanit, J. Agric. Food Chem. 2014, 62, 12641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyrtbzI&md5=4a084700333fdd3938d6ecd149cb4105CAS |
[11] Y. M. Shlyapnikov, E. A. Shlyapnikova, V. N. Morozov, Anal. Chem. 2014, 86, 2082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslGhsQ%3D%3D&md5=2bf1e017ece49af006ce43e1889a515cCAS |
[12] T. Perko, E. Markočič, Z. Knez, M. Škerget, J. Chem. Eng. Data 2011, 56, 4040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OrsbrE&md5=81bd5451dfce78319d9ed2bce42a755dCAS |
[13] T. Siritientong, P. Aramwit, Macromol. Res. 2015, 23, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSmu7fP&md5=f5e934bea0fac1b47d0837c04d567cdcCAS |
[14] L. Li, N. Wang, X. Jin, R. Deng, S. H. Nei, L. Sun, Q. J. Wu, Y. Q. Wei, C. Y. Gong, Biomaterials 2014, 35, 3903.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2hs7o%3D&md5=4306387ac6b24dcff678a221df0c44e5CAS |
[15] C. H. Wang, W. S. Liu, J. F. Sun, G. G. Hou, Q. Chen, W. Cong, F. Zhao, Int. J. Biol. Macromol. 2016, 84, 418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2rsL3O&md5=b59d54e57d61a903660ecc3cd48e7533CAS |
[16] L. H. Weng, X. M. Chen, W. Chen, Biomacromolecules 2007, 8, 1109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislKktLY%3D&md5=1faf0c3511108c9c871fb387798a4238CAS |
[17] S. F. Yan, T. T. Wang, L. Feng, J. Zhu, K. X. Zhang, X. S. Chen, L. Cui, J. B. Yin, Biomacromolecules 2014, 15, 4495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OitLbO&md5=71aff31cc16754e6798f2b46bf6f7026CAS |
[18] E. Bordallo, J. Rieumont, M. J. Tiera, M. Gómez, M. Lazzari, Carbohydr. Polym. 2015, 124, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtVSrsb4%3D&md5=ae6b766907d2d5e061c98ded7062a44bCAS |
[19] H. Itoh, T. Suzuta, T. Hoshino, N. Takaya, J. Biol. Chem. 2008, 283, 5790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1Omtbk%3D&md5=4390d8c7c9ca1360520d4088f5b99fe8CAS |
[20] G. Schaeffer, E. Buhler, S. J. Candau, J. M. Lehn, Macromolecules 2013, 46, 5664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtValsL3M&md5=1f56a1eb76e0e9a029c0c81e0e5499e2CAS |
[21] T. Ganguly, B. B. Kasten, D. K. Bučar, L. R. MacGillivray, C. E. Berkman, P. D. Benny, Chem. Commun. 2011, 47, 12846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFamsLvO&md5=5cfd4959164a0d76e3c129e9699061cbCAS |
[22] A. Kumar, R. R. Ujjwal, A. Mittal, A. Bansal, U. Ojha, ACS Appl. Mater. Inter. 2014, 6, 1855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlGjsg%3D%3D&md5=67cfdb8af8178190736c7543ad3a4dd0CAS |
[23] K. Godula, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 9963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGhsL0%3D&md5=3d0c18c50b82247add0d9205a9f6dbd9CAS |
[24] Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka, Bioconjug. Chem. 2005, 16, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSlur3K&md5=8a2f9641c591f2ddd465a6a5123699d2CAS |
[25] Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew. Chem. Int. Ed. 2003, 42, 4640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12ltb0%3D&md5=3c087a5b81269de9a0e6ace1d29f476fCAS |
[26] Y. Q. Shen, X. Li, Y. W. Huang, G. J. Chang, K. Cao, J. X. Yang, R. Y. Zhang, X. Y. Sheng, X. Ye, Macromol. Res. 2016, 24, 602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFWhtrbF&md5=d8860a5a96f849d4de1403dcf2a290bdCAS |
[27] H. Bae, L. S. Wang, M. Kurisawa, J. Mater. Chem. B 2013, 1, 5371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWnsbfF&md5=4e60e807f436ab56f58b155486a19614CAS |
[28] S. Badran, A. A. Abd-El-Hakim, A. B. Moustafa, M. A. Abd El-Ghaffar, J. Polym. Sci. Part A: Polym. Chem. 1988, 26, 609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1aitL0%3D&md5=4b661264785604459bde3e20dfc948e2CAS |
[29] R. R. Vil’danova, N. N. Sigaeva, O. S. Kukovinets, V. P. Volodina, L. V. Spirikhin, I. S. Zaidullin, S. V. Kolesov, Russ. J. Appl. Chem. 2014, 87, 1547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWqsL4%3D&md5=04eff4af927ae475b2c577c557e63835CAS |
[30] M. M. Bradford, Anal. Biochem. 1976, 72, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=5590c95e89d2b039ae6405686bfa0e67CAS |